Hello大家好!我是小亦,今天呢我整理了怎么样新手学递归的稿子真的是累死我了qwq,请看~
递归是数学与计算机科学中的一个重要概念,它指的是在函数的定义中使用函数自身的方法。对于新手来说,学习递归可能是一个挑战,但只要掌握了正确的方法和步骤,就能够逐步理解和应用递归。以下是一篇针对新手学习递归的详细指南,内容控制在3000字以内。
一、递归的基本概念
-
定义:递归算法是一种直接或者间接调用自身函数或者方法的算法。也就是说,函数在定义时调用了自身。
-
特点:
- 每一级的函数调用都有自己的变量。
- 每一次函数调用都会有一次返回。
- 递归函数中,位于递归调用前的语句和各级被调用函数具有相同的执行顺序。
- 递归函数中,位于递归调用后的语句的执行顺序和各个被调用函数的顺序相反。
- 虽然每一级递归都有自己的变量,但是函数代码并不会得到复制。
二、学习递归的重要观念
在学习递归时,以下两个观念是比较重要的:
- 如果你要求解的目标是f(n),那么你可以默认f(n-1)已经被求解出来了,可以直接使用。
- 多练习几道递归解法的题目,看一下别人是如何去递归的,如何使用return以及在何处使用return的。
三、递归的基本条件
一个递归函数通常要满足以下条件:
- 需要解决的问题可以转化为一个或多个子问题来求解,而这些子问题的求解方法与原问题完全相同,只是在数量规模上不同。
- 递归调用的次数必须是有限的。
- 必须有结束递归的条件来终止递归。
四、递归的使用场景
递归在多种情况下都非常有用,特别是在以下三种场景中:
- 该问题的定义是递归的:例如求n的阶乘、求斐波拉契数列等。
- 该问题的数据结构是递归的:例如单链表、二叉树等。
- 问题的求解方法是递归的:例如汉诺塔问题。
五、递归的学习步骤
- 定义基本案例:找出已知解或解不重要的最简单的情况。这是递归的停止条件,因为它防止函数无限地调用自己。
- 定义递归用例:用更小的子问题来定义问题。将问题分解为更小的问题,并递归调用函数来解决每个子问题。
- 确保递归终止:确保递归函数最终达到基本情况,并且不会进入无限循环。
- 组合子问题的解:将子问题的解组合起来求解原问题。
六、递归的实例分析
以下是一些常见的递归算法实例,通过分析这些实例,可以更好地理解递归的工作原理。
1. 斐波拉契数列
斐波拉契数列是这样一个数列:1、1、2、3、5、8、13、21、34……,即第一项f(1)=1,第二项f(2)=1,第n项为f(n)=f(n-1)+f(n-2)。
- 递归函数功能:假设f(n)的功能是求第n项的值。
- 递归结束条件:当n=1或n=2时,可以轻易知道结果f(1)=f(2)=1,所以递归结束条件可以为n<=2。
- 等价关系式:题目已经把等价关系式给我们了,f(n)=f(n-1)+f(n-2)。
以下是斐波拉契数列的递归代码实现:
2. 递归求阶乘
阶乘的定义是:n的阶乘等于n乘以(n-1)的阶乘,直到1的阶乘等于1。
- 递归函数功能:假设f(n)的功能是求n的阶乘。
- 递归结束条件:当n=1时,f(1)=1,所以递归结束条件可以为n=1。
- 等价关系式:f(n)=n*f(n-1)。
以下是递归求阶乘的代码实现:
3. 递归反转单链表
单链表是一种常见的数据结构,递归反转单链表是一个经典的递归问题。
- 递归函数功能:假设reverse(head)的功能是反转单链表。
- 递归结束条件:当链表为空(head=NULL)或链表只有一个节点(head->next=NULL)时,无需反转,直接返回head。
- 等价关系式:通过递归反转head->next之后的链表,然后将head节点插入到反转后的链表的头部。
以下是递归反转单链表的代码实现:
七、递归的优化与注意事项
-
优化递归:
- 递归算法在分解问题到不能再分解的步骤时,要让递归有退出的条件,否则就会陷入死循环。
- 对于一些递归调用次数较多的算法,可以考虑使用记忆化技术来存储已经计算过的子问题的结果,以避免重复计算。
- 对于一些递归深度较大的算法,可以考虑使用尾递归优化来减少栈空间的使用。
-
注意事项:
- 在编写递归函数时,一定要确保递归能够正确终止,否则会导致无限循环。
- 在递归调用中,要注意参数的传递和返回值的处理,确保递归调用的正确性。
- 在使用递归解决实际问题时,要仔细分析问题是否适合使用递归方法,并考虑递归的效率和可行性。
八、递归的进阶应用
递归在计算机科学和编程中有许多高级应用,以下是一些常见的进阶应用:
- 树和图遍历:递归经常用于遍历和搜索数据结构,如树和图。递归算法可以用于以系统的方式探索树或图的所有节点或顶点。
- 排序算法:递归算法也用于排序算法,如快速排序和归并排序。这些算法使用递归将数据划分为更小的子数组或子列表,对它们进行排序,然后将它们合并在一起。
- 分治算法:许多使用分治方法的算法,如二分查找算法,使用递归将问题分解为更小的子问题。
- 分形生成:可以使用递归算法来生成分形形状和图案。例如,曼德尔布罗特集是通过将递归公式重复应用于复数而生成的。
- 回溯算法:回溯算法用于解决涉及做出一系列
最后最后一定要多多练习关于递归的题目!