- 博客(15)
- 资源 (1)
- 收藏
- 关注
原创 论文阅读|一种风险自适应的广告投标竞价框架
本文提出一种自适应风险感知竞价算法(RRLB),首次在RTB广告中同时考虑CTR预测不确定性和DSP动态风险倾向。通过贝叶斯逻辑回归量化CTR预测的均值和标准差,并基于VaR理论设计两种风险倾向建模方案:专家知识方案和自监督强化学习方案。实验表明,该框架能自适应调整竞价策略,在不同预算约束下显著提升点击量表现。研究突破了传统点估计的局限,为广告竞价中的不确定性管理提供了新思路。
2026-01-04 20:04:21
582
原创 基于强化学习的柔性作业车间智能调度求解算法
作业车间调度问题是一个经典且广泛存在的问题,学术界与工业界对其求解有了深入的研究,传统的求解算法主要是以遗传算法为代表的启发式求解算法。近年来,以深度强化学习技术为基础的新型算法在该领域也有了突破性进展,也取得了良好的效果。本文将详细展示如何将深度学习,强化学习等技术融入到该问题中,以供交流参考。车间作业调度问题(Job Shop Scheduling Problem, JSP)是运筹学和组合优化领域最经典的NP-hard问题之一。它广泛应用于离散制造业,旨在合理安排生产资源以提高效率。JSP是指有 nn
2026-01-04 17:16:23
1247
原创 齐民要术之参考文献批量导入zotero
本文介绍了一种快速导入论文参考文献的方法:首先复制文献列表并让ChatGPT转换为BibTeX格式,然后创建bib文件保存转换结果,最后通过Zotero的BibTeX导入功能即可批量导入所有文献。该方法简化了参考文献管理流程,仅需三个步骤即可完成操作。
2025-12-22 21:09:44
144
原创 快速部署Graphhopper实现离线地图路径规划功能
Docker快速部署Graphhopper实现离线地图路径规划。相比去年相关博客的方法,节约90%的时间,可以快速部署地图服务。
2024-07-20 13:31:30
2140
3
原创 Docker初学者指南
什么是docker?Docker 是一种虚拟化技术,它将应用程序及其依赖项打包到一个称为容器的标准化单元中。与传统的虚拟机不同,Docker 容器共享主机操作系统的内核,因此更轻量、启动更快、性能更高。**通俗回答:**开发了一个项目,可以在本机运行。比如这个项目需要依赖很多的库,如果别人的机器或者服务器想要运行这个项目就得一个个安装这些库并配置环境。工作量可能及其繁琐。但是有了docker就可以直接部署上线了。
2024-07-12 15:14:14
1231
原创 资源受限项目调度程序
资源受限项目调度问题(Resource-Constrained Project Scheduling Problem,RCPSP)是一个经典的优化问题,涉及在有限资源的情况下安排项目任务,以最大化某种指标,比如项目完成时间、资源利用率或成本最小化等。在许多实际应用中,资源受限是常见的,例如在制造业、建筑业、信息技术和项目管理等领域。资源受限项目调度问题是一个NP-难问题,因此没有多项式时间的解法。
2024-04-27 22:32:21
2280
5
原创 epsilon-约束方法
εε-约束方法是一种多目标优化算法。它基于约束优化的思想,通过引入一个参数εε来控制目标函数的权重,从而保证满足约束条件的前提下,寻找到最优解的近似解集。通过选取一个主目标函数,将其余目标函数转化为约束,从而计算每个子优化目标,得到帕累托解集。
2024-03-04 12:12:47
6789
1
原创 探索进化多目标优化算法-使用Pymoo实现
Pymoo是一个用于多目标优化的Python库。下面我们介绍如何使用Pymoo求解自定义问题。首先,我们需要定义我们自己的问题。我们可以使用Pymoo的Problem类来定义。考虑一个简单的问题:其中,为决策变量。我们要求解这个问题,即求解决策变量的值,使得和的值都最大化,同时满足约束条件。其中,我们定义了一个名为MyProblem的类,继承自Problem。
2023-11-20 19:38:49
5132
8
原创 Vscode使用LaTeX过程记录与疑难问题解决
使用LaTeX已经有近一年的时间了,但是大部分时候使用的工具还是overleaf网站等在线工具。作为小白,使用overleaf的使用体验还是不错的,但是免费版的overleaf只支持20s的编译时长,对于一些编译时长超过20s的文档就要开会员版。而且使用overleaf编译较慢,调试bug较难,文档的安全性难以保证。所以最近还是想要切换到本地编辑器上来。通过比较几款本地编辑器,最终还是选择了功能十分强大的vscode。它可以结合多种插件扩展性比较强。
2023-11-20 17:34:22
7359
4
原创 运筹学习记录之列生成
列生成算法是一种用于解决大规模线性规划问题的高效算法,它基于单纯形法的思想,通过求解子问题来找到可以进基的非基变量。在列生成算法中,每个变量都代表一列,因此称为列生成算法。该算法的优点在于其高效的计算性能和较好的收敛性,适用于处理大规模、复杂的线性规划问题。在列生成算法的迭代过程中,因为会不断有变量入基,所以会导致限制主问题的列不断增加,所以叫做列生成算法。
2023-08-21 15:38:28
2634
1
原创 本地部署Graphhopper实现离线地图路径规划功能(小白放心食用版)
在本地部署graphhopper服务,根据两点间经纬度或者位置实现比较精确的路径规划,可以计算路径距离,估计路径时间等。
2023-08-15 14:44:29
8526
22
原创 多目标优化基于NSGA-II
多目标优化是优化问题中经常遇到的一类问题,解决这类问题的方法通常有直接求和法、加权求和法、帕累托最优集合法等。前两种方法将多个目标值相加的方法过于简单粗暴,而且不同量纲的量相加之后的实际意义也有待商榷。而帕累托集合就比较好地解决了这一缺点。
2023-04-03 15:51:30
3096
1
bp神经网络代码代码文件
2024-07-10
Q-learning算法
2024-07-10
NSGA-II双目标优化算法模板
2024-07-10
人工蜂群算法python代码
2024-07-10
‘华为杯’全国研究生数学建模竞赛LaTeX论文模板2023年(第20届)
2023-09-16
双种群遗传算法求解生产线平衡问题
2022-04-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅