探索进化多目标优化算法-使用Pymoo实现

pymoo是什么

pymoo是Python语言的多目标优化库。它提供了经典和现代多目标优化算法的实现,包括遗传算法、粒子群优化、NSGA-II、MOEA/D和多指标遗传编程等。pymoo还提供了全面的可视化工具和评估器,使用户能够轻松地了解和比较不同算法在多目标优化问题上的性能。它广泛使用于科学、工程和经济领域,例如在机器学习、金融投资组合优化和工程设计中。

这里是pymoo的官方网站pymoo: Multi-objective Optimization in Python

为什么用pymoo

使用Pymoo的原因如下:

  1. 方便易用:Pymoo有一个可扩展的用户界面,提供了一个简单但功能强大的API,方便用户定义和解决多种优化问题。

  2. 灵活性:Pymoo提供了一种可扩展的框架,可以轻松地进行多目标优化、单目标优化、约束优化以及混合整数优化等。

  3. 易于扩展:Pymoo允许用户定义其自己的算法,并与现有的算法进行比较。此外,Pymoo还可以轻松添加并行处理。

  4. 高效性:Pymoo实现了许多最新的多目标优化算法,包括NSGA-II,NSGA-III,MOGA等,并使用Cython进行了优化,以提高性能。

  5. 开源:Pymoo是一个开源软件,任何人都可以使用和修改代码,并将其应用于其自己的项目中。

相信我,只要体验过使用pymoo处理多目标优化问题,你绝对会惊叹于pymoo的高效与优雅。pymoo拥有优秀性能和简洁的接口。它可以轻松地解决复杂的优化问题,而且非常容易上手。我可以利用pymoo的算法在几分钟内完成原来需要几天时间的任务。这让我感到非常意外,能够节省大量时间,专注于解决更加有意义的问题。

pymoo安装

为了安装pymoo,你需要先安装Python和pip。接下来,可以使用以下命令安装pymoo:

pip install pymoo

安装完成后,你可以通过在Python控制台中输入以下命令来验证安装是否成功:

import pymoo
print(pymoo.__version__)

如果成功安装,将会输出pymoo的版本号。

pymoo基础入门

  • 解决问题

pymoo中的所有问题都可以通过定义一个Problem类来表示。Problem类需要实现以下方法:

  • __init__(self, ...): 定义问题的参数。
  • evaluate(self, x, *args, **kwargs) -> Tuple[float, ...]: 求解问题的目标函数。
  • calc_pareto_front(self, *args, **kwargs) -> np.ndarray: 这个方法用于为问题提供真实的Pareto前沿(Pareto front)。注意,只有当问题知道真实的Pareto前沿时,此方法才是必需的。

下面是一个具有两个目标的简单问题示例。

import numpy as np
from pymoo.model.problem import Problem

class MyProblem(Problem):
    def __init__(self):
        super().__init__(n_var=2, n_obj=2, n_constr=0, xl=0, xu=1)

    def _evaluate(self, X, out, *args, **kwargs):
        f1 = X[:, 0] ** 2 + X[:, 1] ** 2
        f2 = (X[:, 0] - 1) ** 2 + X[:, 1] ** 2
        out["F"] = np.column_stack([f1, f2])
  • 运行算法

pymoo支持各种进化算法,如NSGA-II、MOEAD等。运行算法通常需要执行以下步骤:

  • 创建算法对象。
  • 创建算法终止准则。
  • 运行算法。

下面是使用NSGA-II算法求解上述问题的示例。

from pymoo.algorithms.nsga2 import NSGA2
from pymoo.factory import get_termination
from pymoo.optimize import minimize

algorithm = NSGA2(
    pop_size=100,
    n_offsprings=50,
    sampling=problem.bound_random,
    crossover=0.9,
    mutation=1.0 / problem.n_var,
    eliminate_duplicates=True
)

termination = get_termination("n_gen", 100)

res = minimize(
    problem,
    algorithm,
    termination,
    seed=1,
    save_history=True,
    verbose=True
)
  • 分析结果

结果包含一组帕累托前沿点和对应的解集(有时称为帕累托集)。

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.scatter(res.F[:,0], res.F[:,1], s=30, label='F')
ax.set_xlabel(r'$f_1$')
ax.set_ylabel(r'$f_2$')
plt.show()
  • 更多信息

要获取更多信息,请查看pymoo的文档。建议先阅读pymoo的教程,以便更全面地了解该库的特性和用法。

用pymoo求解自定义问题

Pymoo是一个用于多目标优化的Python库。下面我们介绍如何使用Pymoo求解自定义问题。

首先,我们需要定义我们自己的问题。我们可以使用Pymoo的Problem类来定义。考虑一个简单的问题:

\max f_1(x) = -(x_1^2 + x_2^2)

\max f_2(x) = -((x_1-1)^2 + x_2^2)

s.t.

 x_1^2 + x_2^2 \leq 1 

其中,x为决策变量。我们要求解这个问题,即求解决策变量x的值,使得f_1(x)f_2(x)的值都最大化,同时满足约束条件。我们可以使用Pymoo的Problem类来定义这个问题:

from pymoo.model.problem import Problem
import numpy as np

class MyProblem(Problem):

    def __init__(self):
        super().__init__(n_var=2, n_obj=2, n_constr=1, xl=-5, xu=5)

    def _evaluate(self, x, out, *args, **kwargs):
        f1 = -np.sum(np.power(x, 2))
        f2 = -np.sum(np.power(x - 1, 2))
        g1 = np.sum(np.power(x, 2)) - 1
        out["F"] = [f1, f2]
        out["G"] = [g1]

其中,我们定义了一个名为MyProblem的类,继承自Problem。在__init__()方法中,我们定义了决策变量$x$的数量(n_var=2)、目标函数的数量(n_obj=2)、约束条件的数量(n_constr=1)、以及决策变量的下界和上界(xl=-5, xu=5)。

在_evaluate()方法中,我们计算了目标函数$f_1(x)$和$f_2(x)$的值,以及约束条件$g_1(x)$的值。在Pymoo中,我们需要将目标函数的值和约束条件的值分别存储在out["F"]和out["G"]中。

接下来,我们可以使用Pymoo中的算法来求解这个问题。我们使用NSGA-II算法作为例子:

from pymoo.algorithms.nsga2 import NSGA2
from pymoo.factory import get_sampling, get_crossover, get_mutation
from pymoo.model.sampling import Sampling
from pymoo.optimize import minimize

class MySampling(Sampling):

    def _do(self, problem, n_samples, **kwargs):
        xl, xu = problem.bounds()
        X = np.random.uniform(xl, xu, (n_samples, problem.n_var))
        return X

problem = MyProblem()
algorithm = NSGA2(pop_size=100, sampling=MySampling(), crossover=get_crossover("real_sbx", prob=0.9, eta=15), mutation=get_mutation("real_pm", eta=20))
res = minimize(problem, algorithm, ("n_gen", 100), verbose=True)

其中,我们定义了一个名为MySampling的类,继承自Sampling。在_do()方法中,我们定义了如何对决策变量进行采样。在这个例子中,我们使用np.random.uniform()方法在决策变量的下界和上界之间生成n_{samples}个随机数。

我们创建一个Problem实例和一个NSGA-II算法实例。在NSGA-II算法中,我们定义了种群大小为100,交叉概率为0.9,变异概率为0.1,交叉方法为real_sbx,变异方法为real_pm。

最后,我们使用minimize()方法来优化问题。我们运行NSGA-II算法100代,并且打印出每一代的最佳解。

  • 7
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 8
    评论
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TUUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值