prime算法求最小生成树(C++)

题目

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

代码

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int g[N][N], st[N], d[N];
int n, m;

int prime()
{
	int res = 0;
	
	memset(d, 0x3f, sizeof d);
	
	for(int i = 0; i < n; i ++)
	{
		//找到集合外到集合最近的点 res + = dist [ t ]先更新是因为当图中
//有自环时for循环 可能 会改变 dist [ t ] 的值
//此时 dist 数组记录的就不是集合中点的距离了
		int t = -1;
		for(int j = 1; j <= n; j ++)
			if(!st[j] && (t == -1 || d[t] > d[j]))
				t = j;
				
		if(i && d[t] == INF) return INF;
		if(i) res += d[t];//为防止自环这个写在上面		
		st[t] = true;
		
		for(int j = 1; j <= n; j ++)
			d[j] = min(d[j], g[t][j]); 
	}
	return res;
}

int main()
{
	cin >> n >> m;
	
	memset(g, 0x3f, sizeof g);
	
	for(int i = 0; i < m; i ++)
	{
		int u, v, w;
		cin >> u >> v >> w;
		g[u][v] = g[v][u] = min(g[u][v], w);	
	}	
	
	int t = prime();
	if(t == INF) puts("impossible");
	else cout << t;
	
	return 0;
}

先累加,再更新的原因

有自环

 

 当图中有自环时for循环 可能 会改变 dist [ t ] 的值,此时 dist 数组记录的就不是集合中点的距离了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值