总览
半监督节点分类问题的求解方法对比


Label Propagation
基于一个朴素的思想,及相邻节点属性相近。











本质上标签传播算法可以简化为根据相邻节点的加权平均,但其面临两个难题:1.不保证收敛,2.没有利用节点自身信息。
Iterative Classification
如何使用节点的信息呢?
即引入根据节点信息直接分类的过程与标签传播相互配合一起迭代输出标签。




以网页分类为例子



具体迭代过程




其原理是基于马尔可夫链的


Correct & Smooth
cs为节点分类任务的后处理流程,本质为去平滑可能存在的噪声







Correct步骤

类似标签传播算法,先验知识为相邻节点的误差是差不多大的。
因此,可以根据扩散矩阵矩阵预估出所有节点的误差分布。


扩散矩阵求解思路



迭代后得各个节点的误差分布

然后根据误差分布加权矫正原来的预测结果,得到correct的结果。

Smooth步骤
将真值标签填入图中,再次使用扩散矩阵对标签进行平滑。


迭代至收敛后,即得到Smooth的结果。



Belief Propagation
信念传播,即一个节点的属性是由周围节点对它的判断来决定。




引入了节点与节点之间的联合概率分布,引入节点的传播概率,某类i节点认为相邻节点j为某类的条件概率。

信息初始化为1后,迭代更新不断地传播


有环时会失效,可以借鉴之前用随机游走的方式去模拟,然后统计获得概率。


Masked Label Prediction
常见地掩码自学习


总结


思考题

【坑待填】