Python的机器学习库Sklearn中重要模块及其常用函数整理

本文汇总了Python机器学习库Sklearn中的核心模块,包括回归、分类、朴素贝叶斯、决策树、支持向量机、聚类、降维和预处理等,并列举了各模块的主要函数,如线性回归、KMeans、PCA等,为机器学习实践提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sklearn 是基于Python的机器学习工具模块。里面主要包含了6大模块:分类、回归、聚类、降维、模型选择、预处理。

根据Sklearn 官方文档资料,下面将各个模块中常用的模型函数总结出来。

 

1.    回归及分类(监督学习)


1.1   广义线性模型  (fromsklearn import linear_model)

最小二乘法:拟合一个线性模型, 使得数据集实际观测数据和预测数据(估计值)之间残差平方和最小。

                       clf=linear_model.LinearRegression(),  clf.fit(X,y)

岭回归:改良的最小二乘,解决共线问题。

                 clf=linear_model.Ridge(alpha=0.5),clf.fit(X,y)

逻辑回归:

clf=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值