算法---随时找到数据流的中位数

该博客讨论如何设计一个MedianHolder结构,以便在数据流中实时计算中位数。通过使用大根堆和小根堆,当新数据到来时,以O(logN)的时间复杂度将其插入,并保持堆的平衡。在任何时候,中位数都可以在O(1)的时间复杂度内获取。解决方案利用了Java的PriorityQueue,并提供了自定义比较器以实现大根堆。
摘要由CSDN通过智能技术生成

随时找到数据流的中位数

【题目】 有一个源源不断地吐出整数的数据流,假设你有足够的空间来 保存吐出的数。请设计一个名叫MedianHolder的结构, MedianHolder可以随时取得之前吐出所有数的中位数。

【要求】
1.如果MedianHolder已经保存了吐出的N个数,那么任意时刻 将一个新数加入到MedianHolder的过程,其时间复杂度是 O(logN)。
2.取得已经吐出的N个数整体的中位数的过程,时间复杂度为 O(1)。

解题思路:

(堆的应用)
1、准备一个大根堆,一个小根堆
2、一个新进来的数,如果比大根堆堆顶大,进小根堆;
比大根堆堆顶小,进大根堆
3、如果两个堆长度差2,弹出堆顶进对面堆
4、最后中位数必在两个堆顶中

小贴士:PriorityQueue优先级队列,实质就是一个栈,默认构成小根堆,如果想实现大根堆的结构,需要自己定义比较器

定义大根堆:
在这里插入图片描述定义小根堆:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值