有一个源源不断地吐出整数的数据流,假设你有足够的空间来保存吐出的数。请设计一个名叫MedianHolder的结构,MedianHolder可以随时取得之前吐出所有数的中位数。
【要求】
1.如果MedianHolder已经保存了吐出的N个数,那么任意时刻将一个新数加入到MedianHolder的过程,其时间复杂度是O(logN)。2.取得已经吐出的N个数整体的中位数的过程,时间复杂度为O(1)。
思路:
题目要求能随时取得所有数的中位数,如果采用数组结构,增加一个数代价很低O(1),但是不断增加数据导致数组需要扩容,本题要求取得所有数的中位数,而每次增加一个数都要排序,时间复杂度至少O(N*logN),因此不现实。
数组排序后中间的数为中位数。数组数据一半划分到大根堆,一半划分到小根堆,两个堆中元素个数和为偶数时,中位数是两个堆的堆顶相加除以2,两个堆中元素个数和为奇数时,中位数是堆元素个数多的那个堆顶。此方法没有排序。怎样把数据放入到大根堆和小根堆?
建立两个辅助堆,一个大根堆,一个小根堆。我们规定不断将数放入大根堆,其实也可以不断往小根堆里插入。先一个数(例如5)先往大根堆里放,然后继续增加数(例如4),如果加入的数小于大根堆的堆顶(4<5),则将这个数放入到大根堆中,此时大根堆里有两个数(5和4)。因为此时小根堆里的数量为0,如果两个堆中的数量差值等于2,就将数量多的堆中的一个数放入到数量少的堆中。该拿哪个数放入另一个堆中呢?堆顶。这里要注意:在不断往堆里添加数时(heapInsert过程),也要同时调整堆的结构,新增数后仍要保持大根堆或小根堆的结构(heapify过程)。此时小根堆里有一个数(5),大根堆里有一个数(4),然后再往大根堆里添加一个数不断循环这个过程。
时间复杂度:往堆里插入数的代价为O(logN),poll操作也是O(logN)。
联想:如果一组数要找出最大数(最小数),并且弹出最大数(最小数)后继续找出剩余数的最大数(最小数),考虑堆结构。
代码:
public class Code_01_MadianQuick {
public static class MedianHolder {
private PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(new MaxHeapComparator());
private PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(new MinHeapComparator());
private void modifyTwoHeapsSize() {
if (this.maxHeap.size() == this.minHeap.size() + 2) {
this.minHeap.add(this.maxHeap.poll());
}
if (this.minHeap.size() == this.maxHeap.size() + 2) {
this.maxHeap.add(this.minHeap.poll());
}
}
public void addNumber(int num) {
if (this.maxHeap.isEmpty()) {
this.maxHeap.add(num);
return;
}
if (this.maxHeap.peek() >= num) {
this.maxHeap.add(num);
} else {
if (this.minHeap.isEmpty()) {
this.minHeap.add(num);
return;
}
if (this.minHeap.peek() > num) {
this.maxHeap.add(num);
} else {
this.minHeap.add(num);
}
}
modifyTwoHeapsSize();
}
public Integer getMedian() {
int maxHeapSize = this.maxHeap.size();
int minHeapSize = this.minHeap.size();
if (maxHeapSize + minHeapSize == 0) {
return null;
}
Integer maxHeapHead = this.maxHeap.peek();
Integer minHeapHead = this.minHeap.peek();
if (((maxHeapSize + minHeapSize) & 1) == 0) {
return (maxHeapHead + minHeapHead) / 2;
}
return maxHeapSize > minHeapSize ? maxHeapHead : minHeapHead;
}
}
public static class MaxHeapComparator implements Comparator<Integer> {
@Override
public int compare(Integer o1, Integer o2) {
if (o2 > o1) {
return 1;
} else {
return -1;
}
}
}
public static class MinHeapComparator implements Comparator<Integer> {
@Override
public int compare(Integer o1, Integer o2) {
if (o2 < o1) {
return 1;
} else {
return -1;
}
}
}
// for test
public static int[] getRandomArray(int maxLen, int maxValue) {
int[] res = new int[(int) (Math.random() * maxLen) + 1];
for (int i = 0; i != res.length; i++) {
res[i] = (int) (Math.random() * maxValue);
}
return res;
}
// for test, this method is ineffective but absolutely right
public static int getMedianOfArray(int[] arr) {
int[] newArr = Arrays.copyOf(arr, arr.length);
Arrays.sort(newArr);
int mid = (newArr.length - 1) / 2;
if ((newArr.length & 1) == 0) {
return (newArr[mid] + newArr[mid + 1]) / 2;
} else {
return newArr[mid];
}
}
public static void printArray(int[] arr) {
for (int i = 0; i != arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
public static void main(String[] args) {
boolean err = false;
int testTimes = 200000;
for (int i = 0; i != testTimes; i++) {
int len = 30;
int maxValue = 1000;
int[] arr = getRandomArray(len, maxValue);
MedianHolder medianHold = new MedianHolder();
for (int j = 0; j != arr.length; j++) {
medianHold.addNumber(arr[j]);
}
if (medianHold.getMedian() != getMedianOfArray(arr)) {
err = true;
printArray(arr);
break;
}
}
System.out.println(err ? "Oops..what a fuck!" : "today is a beautiful day^_^");
}
}