水处理论文笔记(8)

该研究利用人工神经网络(ANN)模型预测稳定状态下的好氧颗粒污泥工艺对化学需氧量(COD)和总氮(TN)的去除效率。通过实验室、中试和全尺寸研究的数据训练和验证了两个前馈反向传播ANN模型。经过数据划分方法的优化,模型的预测性能显著提高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:Artificial neural network modeling for organic
and total nitrogen removal of aerobic granulation
under steady-state condition
作者:H. Gong, R. Pishgar & J. H. Tay
期刊:Environmental Technology SCI4区
摘要:Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANN), computational tools capable of describing complex nonlinear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (COD) (Model I) and total nitrogen (TN) removal
efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60, 20, and 20%, and 80, 10, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R2
) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To
improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modeling the performance of aerobic granular reactors. R2value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56,
方法:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值