ANN 回归预测实战

本文介绍了如何应用人工神经网络(ANN)进行回归预测。通过详细步骤,展示了从数据预处理到模型训练,再到结果评估的全过程,揭示了ANN在解决复杂预测问题中的强大能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd # 数据科学计算工具
import numpy as np # 数值计算工具
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error # 平方绝对误差
from math import sqrt


train_path = r'WWT_data.csv'
data = pd.read_csv(train_path)
#data_train = data.iloc[100:5000]
x = data[["PHI","TUI","CNI","QIN"]]
y_label=data['DOSA']
y = data['DOSA']
Y_test_true = y[25000:]
#data_test = data.iloc[13990:14490]
#x_test = data_test[["PHI","TUI","CNI","QIN"]]
#y_test = data_test['DOSA']

'''载入数据'''
from sklearn import datasets
#boston = datasets.load_boston()
#x,y = boston.data,boston.target
'''引入标准化函数'''
from sklearn import preprocessing
x_MinMax = preprocessing.MinMaxScaler()
y_MinMax = preprocessing.MinMaxScaler()
 
''' 将 y 转换成 列 '''
import numpy as np
y = np.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值