import pandas as pd # 数据科学计算工具
import numpy as np # 数值计算工具
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error # 平方绝对误差
from math import sqrt
train_path = r'WWT_data.csv'
data = pd.read_csv(train_path)
#data_train = data.iloc[100:5000]
x = data[["PHI","TUI","CNI","QIN"]]
y_label=data['DOSA']
y = data['DOSA']
Y_test_true = y[25000:]
#data_test = data.iloc[13990:14490]
#x_test = data_test[["PHI","TUI","CNI","QIN"]]
#y_test = data_test['DOSA']
'''载入数据'''
from sklearn import datasets
#boston = datasets.load_boston()
#x,y = boston.data,boston.target
'''引入标准化函数'''
from sklearn import preprocessing
x_MinMax = preprocessing.MinMaxScaler()
y_MinMax = preprocessing.MinMaxScaler()
''' 将 y 转换成 列 '''
import numpy as np
y = np.
ANN 回归预测实战
最新推荐文章于 2024-08-08 15:43:52 发布