求三角形标准化法向量对三个顶点的导数

求三角形标准化法向量对三个顶点的导数

我们有一个三角形有三个顶点: x i x_i xi , x j x_j xj , 和 x k x_k xk .
在这里插入图片描述

标准化的法向量为:
n → = ( x j → − x i → ) × ( x k − x i → ) ∣ ∣ ( x j → − x i → ) × ( x k → − x i → ) ∣ ∣ \overrightarrow{n}=\frac{(\overrightarrow{x_j}-\overrightarrow{x_i})\times(x_k-\overrightarrow{x_i})}{||(\overrightarrow{x_j}-\overrightarrow{x_i})\times(\overrightarrow{x_k}-\overrightarrow{x_i})||} n =∣∣(xj xi )×(xk xi )∣∣(xj xi )×(xkxi )
为了求偏导, 即, ∂ n → ∂ x i → \frac{\partial{\overrightarrow{n}}}{\partial{\overrightarrow{x_i}}} xi n , ∂ n → ∂ x j → \frac{\partial{\overrightarrow{n}}}{\partial{\overrightarrow{x_j}}} xj n , and ∂ n → ∂ x k → \frac{\partial{\overrightarrow{n}}}{\partial{\overrightarrow{x_k}}} xk n ,它们均为3x3矩阵, 使用链式法则得到.
变量替换 a → = x j → − x i → \overrightarrow{a}=\overrightarrow{x_j}-\overrightarrow{x_i} a =xj xi and b → = x k → − x i → \overrightarrow{b}=\overrightarrow{x_k}-\overrightarrow{x_i} b =xk xi , 使用链式法则后:
∂ n → ∂ x i , j , k → = ∂ n → ∂ a → ∂ a → ∂ x i , j , k → + ∂ n → ∂ b → ∂ b → ∂ x i , j , k → \frac{\partial{\overrightarrow{n}}}{\partial{\overrightarrow{x_{i,j,k}}}}=\frac{\partial{\overrightarrow{n}}}{\partial{\overrightarrow{a}}}\frac{\partial{\overrightarrow{a}}}{\partial{\overrightarrow{x_{i,j,k}}}}+\frac{\partial{\overrightarrow{n}}}{\partial{\overrightarrow{b}}}\frac{\partial{\overrightarrow{b}}}{\partial{\overrightarrow{x_{i,j,k}}}} xi,j,k n =a n xi,j,k a +b n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值