一些理论知识
哈希函数是一种映射关系,根据关键词key,经过一定函数关系得到元素的位置。
常见的哈希函数构造方法
-
直接定址法
-
除留余数法
-
叠加法
-
随机数法
哈希冲突
不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或者哈希碰撞
--------
熟练掌握几种常见的STL。
一、有效的字母异位词
知识点
-
统计字母个数操作技巧 record[s[i] - 'a']++;
-
数组也是哈希表哦~
题目
给定两个字符串 *s*
和 *t*
,编写一个函数来判断 *t*
是否是 *s*
的字母异位词。
注意:若 *s*
和 *t*
中每个字符出现的次数都相同,则称 *s*
和 *t*
互为字母异位词。
题解
class Solution { public: bool isAnagram(string s, string t) { vector<int> record(26, 0); // 统计s中字母个数 for(int i = 0; i < s.size(); i++){ record[s[i] - 'a']++; } for(int j = 0; j < t.size(); j++){ record[t[j] - 'a']--; } for(int k = 0; k < record.size(); k++){ if(record[k] != 0){ return false; } } return true; } };
二、两个数组的交集
知识点
-
unordered_set
无序集合;存储唯一元素;与set
不同,unordered_set
不会对元素进行排序,而是使用哈希表来实现快速的查找和插入操作。unordered_set
使用哈希表来实现,这使得查找、插入和删除操作的平均时间复杂度为常数级别(O(1))。 -
find
如果找到了,find
返回指向该元素的迭代器,否则返回nums1_set.end()
,表示未找到。
题目
给定两个数组 nums1
和 nums2
,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。
题解
class Solution { public: vector<int> intersection(vector<int>& nums1, vector<int>& nums2) { unordered_set<int> result_set; unordered_set<int> nums1_set(nums1.begin(), nums1.end()); for (int i = 0; i < nums2.size(); i++){ if(nums1_set.find(nums2[i]) != nums1_set.end()){ result_set.insert(nums2[i]); } } return vector<int> (result_set.begin(), result_set.end()); } };
三、快乐数
知识点
-
停止条件的设置
在计算每个位置上的数字的平方和时,如果出现了之前已经计算过的结果,就会形成一个循环。这是因为每个数字的平方和可能会有限个,而如果在计算的过程中遇到了之前的结果,就会陷入一个循环,不断重复。
题目
编写一个算法来判断一个数 n
是不是快乐数。
「快乐数」 定义为:
-
对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
-
然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
-
如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n
是 快乐数 就返回 true
;不是,则返回 false
。
题解
class Solution { public: int get_sum(int n){ int sum = 0; while(n){ sum += (n % 10) * (n % 10); n /= 10; } return sum; } bool isHappy(int n) { unordered_set<int> result_sum; while(1){ int sum = get_sum(n); if(sum == 1) return true; if(result_sum.find(sum) == result_sum.end()){ result_sum.insert(sum); } else{ return false; } n = sum; } } };
四、两数之和
知识点
学会 unordered_map
的用法
映射 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O(log n) | O(log n) |
std::multimap | 红黑树 | key有序 | key可重复 | key不可修改 | O(log n) | O(log n) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O(1) | O(1) |
题目
给定一个整数数组 nums
和一个整数目标值 target
,请你在该数组中找出 和为目标值 target
的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
题解
class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map <int, int> nums_map; for(int i = 0; i < nums.size(); i++){ int tmp = target - nums[i]; auto goal = nums_map.find(tmp); if(goal != nums_map.end()){ return {goal->second, i}; } nums_map.insert(pair<int,int>(nums[i], i)); } return {}; } };
五、四数相加 II
知识点
-
时间复杂度; 不需要考虑去重;哈希表
题目
给你四个整数数组 nums1
、nums2
、nums3
和 nums4
,数组长度都是 n
,请你计算有多少个元组 (i, j, k, l)
能满足:
-
0 <= i, j, k, l < n
-
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
题解
class Solution { public: int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) { unordered_map<int,int> Map; for (int i : nums1){ for(int j : nums2){ Map[i + j]++; } } int count = 0; for (int i : nums3){ for(int j : nums4){ if(Map.find(-(i + j)) != Map.end()){ count += Map[-(i + j)]; } } } return count; } };
六、赎金信
题目
给你两个字符串:ransomNote
和 magazine
,判断 ransomNote
能不能由 magazine
里面的字符构成。
如果可以,返回 true
;否则返回 false
。
magazine
中的每个字符只能在 ransomNote
中使用一次。
题解
解法类似于 ‘有效的字母异位词’
class Solution { public: bool canConstruct(string ransomNote, string magazine) { int record[26] = {0}; for(int i = 0; i < magazine.size(); i++){ record[magazine[i] - 'a']++; } for(int j = 0; j < ransomNote.size(); j++){ record[ransomNote[j] - 'a']--; } for(int k = 0; k < 26; k++){ if(record[k] < 0){ return false; } } return true; } };