删除二叉树结点

二叉查找树
  二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树:
  若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  它的左、右子树也分别为二叉排序树。
  二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索,插入,删除的复杂度等于树高,O(log(n)).
  目录
  1 二叉排序树的查找算法
  2 在二叉排序树插入结点的算法
  3 在二叉排序树删除结点的算法
  二叉排序树的查找算法:
  在二叉排序树b中查找x的过程为:
  若b是空树,则搜索失败,否则:
  若x等于b的根结点的数据域之值,则查找成功;否则:
  若x小于b的根结点的数据域之值,则搜索左子树;否则:查找右子树。
  向一个二叉排序树b中插入一个结点s的算法:
  过程为:
  若b是空树,则将s所指结点作为根结点插入,否则:
  若s->data等于b的根结点的数据域之值,则返回,否则:
  若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:
  把s所指结点插入到右子树中。
  在二叉排序树删除结点的算法:
  在二叉排序树删去一个结点,分三种情况讨论:
  若*x结点为叶子结点,即xL(左子树)和xR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
  若*x结点只有左子树xL或右子树xR,此时只要令xL或xR直接成为其双亲结点*parent的左子树或者右子树即可,作此修改也不破坏二叉排序树的特性。
  若*x结点的左子树和右子树均不空。在删去*x之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令*x的左子树为*parent的左子树,*xsucc为*f左子树的最右下的结点,而*x的右子树为*xsucc的右子树;其二是令*x的直接前驱(或直接后继)替代*x,然后再从二叉排序树中删去它的直接前驱(或直接后继)。
  中序后继结点替换要删除的节点:从x的右儿子开始,一直靠左往下走,最后到达的节点就是所需的后继结点,程序中用xsucc指向这个后继结点,现在只需删除xsucc指向的节点,可以根据情况1或者是情况2中的方法来删除它。
  C++实现:
  //BST:Binary Search Tree(二叉搜索树)
  #include<iostream>
  #include<cstdlib>
  using namespace std;
  template<class DataType>
  class BST
  {
  private:
  class Node
  {
  public:
  DataType data;
  Node *left,*right;
  Node():left(NULL),right(NULL){}
  Node(DataType item):data(item),left(NULL),right(NULL){}
  };
  typedef Node* Nodepointer;
  public:
  BST();
  bool Empty() const;
  bool Search(const DataType & item) const;
  bool Search(const DataType & item,bool & found,Nodepointer & local,Nodepointer & parent);
  void Insert(const DataType & item);
  void Delete(const DataType & item);
  private:
  Nodepointer root;
  };
  template<class DataType> //构造函数
  inline BST<DataType>::BST()
  {
  root=NULL;
  }
  template<class DataType>//是否为空
  inline bool BST<DataType>::Empty() const
  {
  return root==NULL;
  }
  template<class DataType>//查找
  bool BST<DataType>::Search(const DataType & item) const
  {
  Nodepointer local=root;
  bool found=false;
  while(1)
  {
  if(found||local==NULL) break;
  if(item<local->data) local=local->left;
  else if(item>local->data) local=local->right;
  else found=true;
  }
  return found;
  }
  template<class DataType>//用于删除函数的查找
  bool BST<DataType>::Search(const DataType & item,bool & found,Nodepointer & local,Nodepointer & parent)
  {
  local=root;
  parent=NULL;
  found=false;
  while(1)
  {
  if(found||local==NULL) break;
  if(item<local->data)
  {
  parent=local;
  local=local->left;
  }
  else if(item>local->data)
  {
  parent=local;
  local=local->right;
  }
  else found=true;
  }
  }
  template<class DataType>//删除
  void BST<DataType>::Delete(const DataType & item)
  {
  Nodepointer x,// 指向包含项的节点
  parent;//x 和 xsucc的父亲
  bool found;
  Search(item,found,x,parent);
  if(!found)
  {
  cout<<"Item not in the BST/n";
  return ;
  }
  if(x->left!=NULL&&x->right!=NULL)//处理有两个儿子的节点
  {
  Nodepointer xsucc=x->right;
  parent=x;
  while(xsucc->left!=NULL)
  {
  parent=xsucc;
  xsucc=xsucc->left;
  }
  x->data=xsucc->data; //把xsucc的内容移到x,并令x指向后继,该后继将被删除
  x=xsucc;
  }
  Nodepointer subtree=x->left; //处理有0个或者1个儿子的情况
  if(subtree==NULL) subtree=x->right;
  if(parent==NULL) root=subtree;
  else if(parent->left==x) parent->left=subtree;
  else parent->right=subtree;
  delete x;
  }
  template<class DataType>// 插入
  void BST<DataType>::Insert(const DataType & item)
  {
  Nodepointer local=root,parent=NULL;
  bool found=false;
  while(1)
  {
  if(found||local==NULL) break;
  parent=local;
  if(item<local->data) local=local->left;
  else if(item>local->data) local=local->right;
  else found=true;
  }
  if(found) cerr<<"Item already in the tree/n";
  else
  {
  local=new Node(item);
  if(parent==NULL) root=local;
  else if(item<parent->data) parent->left=local;
  else parent->right=local;
  }
  }
  int main()
  {
  char d[7]={'O','E','T','C','U','M','P'};
  BST<char> chartree;
  for(int i=0;i<7;++i)
  chartree.Insert(d);
  if(chartree.Search('E')) cout<<"Found!/n";
  chartree.Delete('E');
  if(!chartree.Search('E')) cout<<"E is deleted/n";
  system("pause");
  return 0;
  }
  二叉排序树性能分析
  每个结点的Ci为该结点的层次数。最坏情况下,当先后插入的关键字有序时,构成的二叉排序树蜕变为单支树,树的深度为n,其平均查找长度为/frac{n+1}{2}(和顺序查找相同),最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和log2(n)成正比(O(log2(n)))。
  Deleting a node with two children from a binary search tree
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值