二叉树-删除节点

二叉树删除节点的操作方法:

完成删除结点的操作规定:

1)如果删除的节点是叶子节点,则删除该节点
2)如果删除的节点是非叶子节点,则删除该子树

思路:

1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要册除结点,而不能去判断当前这个结点是不是需要删除结点
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null ;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除.
6.考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空

代码实现:

public class BinaryTreeDemo {
    public static void main(String[] args) {
        //先需要创建一棵树
        BinaryTree tree = new BinaryTree();

        HeroNode root = new HeroNode(1,"宋江");
        HeroNode node2 = new HeroNode(2,"吴用");
        HeroNode node3 = new HeroNode(3,"卢俊义");
        HeroNode node4 = new HeroNode(4,"林冲");

        //手动创建二叉树
        root.setLeft(node2);
        root.setRight(node3);
        node3.setRight(node4);
        tree.setRoot(root);
/*
        //测试
        System.out.println("先序遍历");
        tree.preOrder();
        System.out.println("中序遍历");
        tree.infixOrder();
        System.out.println("后序遍历");
        tree.postOrder();

        //前序遍历
        System.out.println("前序遍历方式");
        HeroNode resNode = tree.preOrderSearch(3);
        if (resNode != null){
            System.out.printf("已经找到,信息为:no=%d name=%s\n",resNode.getNo(),resNode.getName());
        }else {
            System.out.println("未找到该节点!");
        }

        //中序遍历
        System.out.println("中序遍历方式");
        resNode = tree.infixOrderSearch(2);
        if (resNode != null){
            System.out.printf("已经找到,信息为:no=%d name=%s\n",resNode.getNo(),resNode.getName());
        }else {
            System.out.println("未找到该节点!");
        }

        //后序遍历
        System.out.println("后序遍历方式");
        resNode = tree.postOrderSearch(1);
        if (resNode != null){
            System.out.printf("已经找到,信息为:no=%d name=%s\n",resNode.getNo(),resNode.getName());
        }else {
            System.out.println("未找到该节点!");
        }*/
        //删除节点
        System.out.println("删除前,先序遍历");
        tree.preOrder();
        tree.delNode(3);
        System.out.println("删除后,先序遍历");
        tree.preOrder();
    }
}

//定义BInaryTree二叉树
class BinaryTree{
    private HeroNode root;

    public void setRoot(HeroNode root) {
        this.root = root;
    }

    //前序遍历
    public void preOrder(){
        if (this.root != null){
            this.root.preOrder();
        }else {
            System.out.println("该二叉树为空!");
        }
    }
    //中序遍历
    public void infixOrder(){
        if (this.root != null){
            this.root.infixOrder();
        }else {
            System.out.println("该二叉树为空!");
        }
    }

    //后序遍历
    public void postOrder(){
        if (this.root != null){
            this.root.postOrder();
        }else {
            System.out.println("该二叉树为空!");
        }
    }
    //前序遍历查找
    public HeroNode preOrderSearch(int no){
        if (this.root != null){
            return this.root.preOrderSearch(no);
        }else {
            return null;
        }
    }
    //中序遍历查找
    public  HeroNode infixOrderSearch(int no){
        if (this.root != null){
            return this.root.infixOrderSearch(no);
        }else {
            return null;
        }
    }

    //后序遍历
    public HeroNode postOrderSearch(int no){
        if (this.root != null){
            return this.root.postOrderSearch(no);
        }else {
            return null;
        }
    }

    //删除节点
    public void delNode(int no){
        if (root != null){
            if (root.getNo() == no){
                root = null;
            }else {
                root.delNode(no);
            }
        }else {
            System.out.println("空树,不能删除");
        }
    }
}

//先创建HeroNode节点
class HeroNode{
    private int no;
    private String name;
    private HeroNode left;
    private HeroNode right;

    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public HeroNode getLeft() {
        return left;
    }

    public void setLeft(HeroNode left) {
        this.left = left;
    }

    public HeroNode getRight() {
        return right;
    }

    public void setRight(HeroNode right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }

    //编写前缀遍历的方法
    public void preOrder(){
        System.out.println(this);//先输出父节点
        if (this.left != null){//递归向左子树前序遍历
            this.left.preOrder();
        }
        if (this.right != null){
            this.right.preOrder();
        }
    }
    //中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null){
            this.right.infixOrder();
        }
    }
    //后序遍历
    public void postOrder(){
        if (this.left != null){
            this.left.postOrder();
        }
        if (this.right != null){
            this.right.postOrder();
        }
        System.out.println(this);
    }

    //前序遍历查找
    /**
     * @param no 要查找的编号
     * @return  查找到元素就返回该节点,没找到就返回null
     * */
    public HeroNode preOrderSearch(int no){
        //比较当前节点是不是
        if (this.no == no){
            return this;
        }
        //没有找到就左递归
        HeroNode resNode = null;
        if (this.left != null){
            resNode = this.left.preOrderSearch(no);
        }
        if (resNode != null){//左子树找到该节点
            return resNode;
        }
        //左子节点未找到,需要向右递归继续查找
        if (this.right != null){
            resNode = this.right.preOrderSearch(no);
        }
        return resNode;
    }

    //中序遍历查找
    public HeroNode infixOrderSearch(int no){
        HeroNode resNode = null;
        if (this.left != null){
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null){
            return resNode;
        }

        if (this.no == no){
            return this;
        }

        if (this.right != null){
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;
    }

    //后序遍历查找
    public HeroNode postOrderSearch(int no){
        HeroNode resNode = null;
        if (this.left != null){
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null){
            return resNode;
        }
        if (this.right != null){
            resNode = this.right.infixOrderSearch(no);
        }
        if (resNode != null){
            return resNode;
        }
        if (this.no == no){
            return this;
        }
        return resNode;
    }

    //递归删除节点
    //1)如果删除的节点是叶子节点,则删除该节点
    //2)如果删除的节点是非叶子节点,则删除该子树
    public void delNode(int no){
        //思路
        /*
        *   1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要册除结点,而不能去判断当前这个结点是不是需要删除结点
            2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
            3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null ;并且就返回(结束递归删除)
            4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
            5.如果第4步也没有删除结点,则应当向右子树进行递归删除.
            6.考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
        * */
        if (this.left != null && this.left.no == no){
            this.left = null;
            return;
        }
        if (this.right != null && this.right.no == no){
            this.right = null;
            return;
        }

        if (this.left != null){
            this.left.delNode(no);
        }
        if (this.right != null){
            this.right.delNode(no);
        }



    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值