二叉树删除节点的操作方法:
完成删除结点的操作规定:
1)如果删除的节点是叶子节点,则删除该节点
2)如果删除的节点是非叶子节点,则删除该子树
思路:
1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要册除结点,而不能去判断当前这个结点是不是需要删除结点
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null ;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除.
6.考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
代码实现:
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一棵树
BinaryTree tree = new BinaryTree();
HeroNode root = new HeroNode(1,"宋江");
HeroNode node2 = new HeroNode(2,"吴用");
HeroNode node3 = new HeroNode(3,"卢俊义");
HeroNode node4 = new HeroNode(4,"林冲");
//手动创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
tree.setRoot(root);
/*
//测试
System.out.println("先序遍历");
tree.preOrder();
System.out.println("中序遍历");
tree.infixOrder();
System.out.println("后序遍历");
tree.postOrder();
//前序遍历
System.out.println("前序遍历方式");
HeroNode resNode = tree.preOrderSearch(3);
if (resNode != null){
System.out.printf("已经找到,信息为:no=%d name=%s\n",resNode.getNo(),resNode.getName());
}else {
System.out.println("未找到该节点!");
}
//中序遍历
System.out.println("中序遍历方式");
resNode = tree.infixOrderSearch(2);
if (resNode != null){
System.out.printf("已经找到,信息为:no=%d name=%s\n",resNode.getNo(),resNode.getName());
}else {
System.out.println("未找到该节点!");
}
//后序遍历
System.out.println("后序遍历方式");
resNode = tree.postOrderSearch(1);
if (resNode != null){
System.out.printf("已经找到,信息为:no=%d name=%s\n",resNode.getNo(),resNode.getName());
}else {
System.out.println("未找到该节点!");
}*/
//删除节点
System.out.println("删除前,先序遍历");
tree.preOrder();
tree.delNode(3);
System.out.println("删除后,先序遍历");
tree.preOrder();
}
}
//定义BInaryTree二叉树
class BinaryTree{
private HeroNode root;
public void setRoot(HeroNode root) {
this.root = root;
}
//前序遍历
public void preOrder(){
if (this.root != null){
this.root.preOrder();
}else {
System.out.println("该二叉树为空!");
}
}
//中序遍历
public void infixOrder(){
if (this.root != null){
this.root.infixOrder();
}else {
System.out.println("该二叉树为空!");
}
}
//后序遍历
public void postOrder(){
if (this.root != null){
this.root.postOrder();
}else {
System.out.println("该二叉树为空!");
}
}
//前序遍历查找
public HeroNode preOrderSearch(int no){
if (this.root != null){
return this.root.preOrderSearch(no);
}else {
return null;
}
}
//中序遍历查找
public HeroNode infixOrderSearch(int no){
if (this.root != null){
return this.root.infixOrderSearch(no);
}else {
return null;
}
}
//后序遍历
public HeroNode postOrderSearch(int no){
if (this.root != null){
return this.root.postOrderSearch(no);
}else {
return null;
}
}
//删除节点
public void delNode(int no){
if (root != null){
if (root.getNo() == no){
root = null;
}else {
root.delNode(no);
}
}else {
System.out.println("空树,不能删除");
}
}
}
//先创建HeroNode节点
class HeroNode{
private int no;
private String name;
private HeroNode left;
private HeroNode right;
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//编写前缀遍历的方法
public void preOrder(){
System.out.println(this);//先输出父节点
if (this.left != null){//递归向左子树前序遍历
this.left.preOrder();
}
if (this.right != null){
this.right.preOrder();
}
}
//中序遍历
public void infixOrder(){
if (this.left != null){
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null){
this.right.infixOrder();
}
}
//后序遍历
public void postOrder(){
if (this.left != null){
this.left.postOrder();
}
if (this.right != null){
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
/**
* @param no 要查找的编号
* @return 查找到元素就返回该节点,没找到就返回null
* */
public HeroNode preOrderSearch(int no){
//比较当前节点是不是
if (this.no == no){
return this;
}
//没有找到就左递归
HeroNode resNode = null;
if (this.left != null){
resNode = this.left.preOrderSearch(no);
}
if (resNode != null){//左子树找到该节点
return resNode;
}
//左子节点未找到,需要向右递归继续查找
if (this.right != null){
resNode = this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找
public HeroNode infixOrderSearch(int no){
HeroNode resNode = null;
if (this.left != null){
resNode = this.left.infixOrderSearch(no);
}
if (resNode != null){
return resNode;
}
if (this.no == no){
return this;
}
if (this.right != null){
resNode = this.right.infixOrderSearch(no);
}
return resNode;
}
//后序遍历查找
public HeroNode postOrderSearch(int no){
HeroNode resNode = null;
if (this.left != null){
resNode = this.left.infixOrderSearch(no);
}
if (resNode != null){
return resNode;
}
if (this.right != null){
resNode = this.right.infixOrderSearch(no);
}
if (resNode != null){
return resNode;
}
if (this.no == no){
return this;
}
return resNode;
}
//递归删除节点
//1)如果删除的节点是叶子节点,则删除该节点
//2)如果删除的节点是非叶子节点,则删除该子树
public void delNode(int no){
//思路
/*
* 1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要册除结点,而不能去判断当前这个结点是不是需要删除结点
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null ;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除.
6.考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
* */
if (this.left != null && this.left.no == no){
this.left = null;
return;
}
if (this.right != null && this.right.no == no){
this.right = null;
return;
}
if (this.left != null){
this.left.delNode(no);
}
if (this.right != null){
this.right.delNode(no);
}
}
}