Hadoop 的搭建
Hadoop 的下载地址:
http://www.apache.org/dyn/closer.cgi/hadoop/core/
版本:hadoop0.20.1
JDK 的安装:
要求必须安装 jdk1.5.07 以上的版本。
分步式环境的搭建:
1、 硬件环境
我们采用了 3 台机器来构建,都安装的是 ubuntu10系统,并且都有一个名为 “sam“的帐号,如下
主机名称:hdfs1 ip:192.168.2.227
主机名称:hdfs2 ip:192.168.1.247
主机名称:hdfs3 ip:192.168.1.249
功能:NameNode,JobTracker
功能:DataNode,TaskTracker
功能:DataNode,TaskTracker
重点:修改 3 台机器的/etc/hosts,让彼此的主机名称和 ip 都能顺利解析,且机器名不一样。
127.0.0.1 localhost
127.0.1.1 sam-desktop
192.168.2.227 hdfs1
192.168.1.247 hdfs3
192.168.1.249 hdfs2
2、 每台机器都要安装 java 环境,
我们的路径统一为 “ /usr/java/jdk1.6.0_21“, 并添加到系统环境变量 sudo gedit /etc/profile
JAVA_HOME=/usr/java/jdk1.6.0_21
export JAVA_HOME
CLASSPATH=.:$JAVA_HOME/lib/tools.jar:/lib.dt.jar
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME CLASSPATH PATH
3、 下载 hadoop0.20.1,将 hadoop
解压到/usr/hadoop/,建议最好也将 hadoop 的目录添加到环境变量里面去:
HADOOP_HOME=/usr/hadoop/hadoop-0.21.0
export HADOOP_HOME
HADOOP_CONF_DIR=$HADOOP_HOME/conf #这是 hadoop 的配置文件目录
export HADOOP_CONF_DIR
HADOOP_LOG_DIR=$HADOOP_HOME/log #存放运行日志目录
export HADOOP_LOG_DIR
export PATH=$PATH:$HADOOP_HOME/bin
4、 安装 ssh,并生成公钥和私钥
sam@sam-desktop$>运行 ssh-keygen -t rsa,根据屏幕提示直接选择“回车”
>会在用户目录~/.ssh/产生两个文件,id_rsa,id_rsa.pub
>cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
以上配置完成后,执行一下 ssh localhsot,确认你的每台机器都可以使用 ssh
5、 拷贝authorized_keys
将 master 服务器上的 authorized_keys 的内容加到 slave 两台机器的 authorized_keys 文件中。让 master 也可以
不需要密码访问 2 台 slave 服务器。
sudo scp authorized_keys hdfs2:/home/sam/.ssh/
sudo scp authorized_keys hdfs3:/home/sam/.ssh/
ssh hdfs2
ssh hdfs3
6、 修改 hadoop 的[conf/masters]、[conf/slaves]
接下来,我们要修改 hadoop 的[conf/masters]、[conf/slaves]这 2 个文件:
Master 设置(<HADOOP_HOME>/conf/masters):hdfs1
Slave 设置(<HADOOP_HOME>/conf/slaves):hdfs2 hdfs3
7、 修改[conf/hadoop-env.sh]:
export JAVA_HOME=/usr/java/jdk1.6.0_21
8、 修改core-site.xml,hdfs-site.xml,mapred-site.xml
修改core-site.xml(hdfs和mapreduce中很普通的I/O设置),hdfs-site.xml(datanode配置|HDFS后台程序设置的配置:名称节点,第二名称节点和数据节点),mapred-site.xml,有关 hadoop 的性能优化调整,需要研究
<property>
<name>fs.default.name</name>//你的 namenode 的配置,机器名加端口
<value>hdfs://hdfs1:9000</value>
</configuration>
<configuration>
<property>
<name>dfs.replication</name>//数据需要备份的数量,默认是三
<value>3</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/usr/hadoop/hadoop-0.21.0/data</value>
</property>
<property>
<value>/usr/hadoop/hadoop-0.21.0/namenode/</value>
</property>
<property>
<name>hadoop.tmp.dir</name>//Hadoop 的默认临时路径,这个最好配置
<value>/usr/hadoop/hadoop-0.21.0/tmp/</value>
</property>
<property>
<name>dfs.block.size</name>//block 的大小,单位字节,后面会提到用处,必须是 512 的倍数,因为采用crc 作文件完整性校验。
<description>The default block size for new files.</description>
</property>
</configuration>
<configuration>
<name>mapred.job.tracker</name>//你的 JobTracker 的配置,机器名加端口
</property>
<property>
<name>mapred.tasktracker.map.tasks.maximum</name>
<value>4</value>
</property>
<property>
<name>mapred.tasktracker.reduce.tasks.maximum</name>
<value>4</value>
</property>
<property>
<name>mapred.child.java.opts</name>//java 虚拟机的一些参数可以参照配置
<value>-Xmx512m</value>
</property>
</configuration>
9、 hadoop 的整体环境拷贝
然后将 hadoop 的整体环境拷贝到 hdfs2、hdfs3 上面去
scp -r /usr/hadoop/hadoop-0.21.0 hdfs2:/usr/hadoop/hadoop-0.21.0
scp -r /usr/hadoop/hadoop-0.21.0 hdfs3:/usr/hadoop/hadoop-0.21.0
10、namenode 上面格式化一个新的分布式文件系统 HDFS
在 hdfs1 这个 namenode 上面格式化一个新的分布式文件系统 HDFS,就是 hdfs-site.xml 文件中指定
的 hadoop.tmp.dir 路径
<HADOOP_HOME>/bin/hadoop namenode –format
11、启动 Hadoop
到此大致上就完成了 hadoop 环境布署
启动 hadoop:<HADOOP_HOME>/bin/start-all.sh
停止 hadoop:<HADOOP_HOME>/bin/stop-all.sh
说明:
(1) 执行启动 Hadoop 进程后,
> 在 master 服务器会启动 3 个 java 进程,分别的 NameNode,SecondNameNode,JobTracker,在 LOG 目录下
会产生 2 个文件,分别对应 NameNode 的运行日志和 JobTracker 的运行日志,
> 在 slave 服务器会启动 2 个 java 进程,分别为 DataNode,TaskTracker,,在 LOG 目录下会产生 2 个文件
分别对应 DataNode 的运行日志和 TaskTracker 的运行日志,可以通过查看日志分析 hadoop 的启动是
否正确。
(2) 通过 IE 浏览分布式文件系统中的文件
> 访问 http://hdfs1:50030 可以查看 JobTracker 的运行状态。
> 访问 http://hdfs2:50060 可以查看 TaskTracker 的运行状态。
> 访问 http://hdfs1:50070 可以查看 NameNode 以及整个分布式文件系统的状态。
修改 Linux主机名
第一步:
#hostname myhost //只是临时修改 重启后会恢复成原来的设置
第二步:
vi /etc/sysconfig/network
修改其中的hostname
wq 退出
第三步:
vi /etc/hosts 修改中间一个
wq 退出
对于ubuntu
第一步:
sudo gedit /etc/hostname
第二步:
sudo gedit /etc/hosts
找到127.0.1.1这一行,把它右边的旧主机名改成你的新主机名即可。重新启动计算机生效。
ssh keygen 免輸入密碼
步驟如下:
* ssh-keygen -t rsa 或 ssh-keygen -d (dsa) => 產生出 id_rsa, id_rsa.pub
* scp id_rsa.pub server_hostname:~/.ssh/
* ssh server_hostname
* cat .ssh/id_rsa.pub >> .ssh/authorized_keys 即可
* 這樣子就可以 key 認證登入, 不需輸入密碼.
注意: gen 時會問 Enter passphrase (empty for no passphrase): # 此處直接 enter 跳過,下次才不會詢問password
簡單解說一下:
* id_rsa: private key
* id_rsa.pub: public key
將 public key(id_rsa.pub) 拷貝到遠端的電腦後, 加到那 user 的 .ssh/authorized_keys 中.
之後連線時, 就會用本機的 private key(id_rsa) 與遠端電腦的 public key(authorized_keys) 做認證, 確認完成就可以直接登入, 不需輸入帳號密碼, 而且也比較安全.
配置服务端
启动SSH服务端很简单只需要运行
# sshd
sshd_enable="YES"
就可以在每次启动时自动运行SSH服务端了。
SSH服务端的配置使用的配置文件是“/etc/ssh/sshd_config”,并且OpenSSH1.x和2.x的服务器配置文件均为此文件。
配置客户端
客户端想连接远程服务器只需要输入
#ssh 域名(或ip)
就可以了
比如想以fdy84用户连接IP地址为192.168.0.6的一台远程服务器 需要键入
# ssh 192.168.0.6 -l fdy84
只要配置正确就可以连上远端的服务器了
基于Eclipse的Hadoop应用开发环境的配置
基于Eclipse的Hadoop应用开发环境的配置
第一步:下载hadoop-0.20.1-eclipse-plugin.jar
界面是这样滴,选择Window->Open Perspective,可见到一个窗口,里面有一个小象图标:Map/Reduce,点击它,会打开一个新的Perspective。然后点击Window->Show View,可以打开一个View,如图1所示,
图1
在这个View中,我们可以创建一个或多个Hadoop运行环境,这个运行环境,有点像,在Eclipse中配置JDBC数据库连接一样。如图2,图3所示:
配置完成以后,显示如图1左边的树形结构一样,这很像在Eclipse配置了,Tomcat的Server项目一样
你点击view中的小象图标,很可能会报一个错误:
Cannot connect to the Map/Reduce location: sam@sam-desktop
java.io.IOException: Unknown protocol to name node: org.apache.hadoop.mapred.JobSubmissionProtocol
at org.apache.hadoop.dfs.NameNode.getProtocolVersion(NameNode.java:84)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:585)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:452)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:888)
我也遇到这个问题,很让我郁闷,我愿想是不是我的服务器哪里出了问题?后来才知道,是我的端口配置错误了,我在hdfs-site.xml中不是配置了:
<property>
<name>fs.default.name</name>
<value>hdfs://hdfs1:9000</value>
</property>
<property>
<name>mapred.job.tracker</name>
<value>hdfs://hdfs1:9001</value>
</property>
这两个端口很重要,9000是namenode的监听端口,而9001是jobtracker的监听端口,在图3的界面上新建DFS location时候,可以看到Map/Reduce Master,当时我还没弄明白,这是什么意思,现在才知道,这是jobtracker所在机器及监听端口,于是我设置成:host=sam-desktop,port=9001,而DFS Master中勾选Use M/R Master Host(意思是:是否使用与JobTracker相同的主机?)我的当然是勾上。端口当然也就是9000了,即host= sam-desktop,port=9000。
于是,连接the Map/Reduce location就不会再出现错误了。下面的用户是sam,因为我的所有的ubuntu都是sam的用户的。
查看这个两个端口是否工作正常
我们可以用Web的方式来查看这个两个端口是否工作正常,namenode的Web访问端口是50070,由于我的namenode是建立在hdfs1上的,因此,我要用Web方式访问namenode,那么在浏览器中敲入地址:http://hdfs1:50070,你就会看到一个页面,如下图4:
而9001是也是可以用Web方式来访问的,我的namenode和jobtracker是在一台机器上的,网址是http://hdfs1:50030,如果你配置成功,可以打开如下图5的页面:
tasktracker可以Web方式访问,由于我的tasktracker是建立在hdfs2上的,因此网址是:http://hdfs2:50060,如果你配置成功,可以打开如下图6的页面: