【机器学习】第25篇 支持向量机电力负荷预测(数据清洗、特征提取、标准化)

本文介绍了使用matlab进行短期电力负荷预测的方法,涉及数据预处理(数据清洗、特征提取、标准化)、SVM模型构建以及预测过程。通过预处理提高数据质量,利用SVM模型进行训练,并对新数据进行预测,以提升预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

基于matlab SVM短期电力负荷预测

数据预处理

构建SVM模型

进行预测


基于matlab SVM短期电力负荷预测

利用SVM(Support Vector Machine)模型进行电力负荷预测是一种常见的方法之一。下面,我将介绍一种基于matlab的SVM短期电力负荷预测方法。

数据预处理

对电力负荷数据进行预处理,包括数据清洗、特征提取和标准化等操作。具体步骤如下:

  • 数据清洗:排除异常值,如空值、负数等。
  • 特征提取:从原始数据中提取有效特征。例如,可以根据历史负荷数据的波动性、周期性等特征构建特征向量。
  • 标准化:将数据缩放到相同的范围,有助于提高SVM模型的预测精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式职场

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值