目录
基于matlab SVM短期电力负荷预测
利用SVM(Support Vector Machine)模型进行电力负荷预测是一种常见的方法之一。下面,我将介绍一种基于matlab的SVM短期电力负荷预测方法。
数据预处理
对电力负荷数据进行预处理,包括数据清洗、特征提取和标准化等操作。具体步骤如下:
- 数据清洗:排除异常值,如空值、负数等。
- 特征提取:从原始数据中提取有效特征。例如,可以根据历史负荷数据的波动性、周期性等特征构建特征向量。
- 标准化:将数据缩放到相同的范围,有助于提高SVM模型的预测精度。