CNN
文章平均质量分 70
夏日清风有你
研究深度学习,类脑计算、大模型、高性能计算、云计算和边缘计算领域。
展开
-
图像梯度计算
图像其实就是二元函数 f(x,y)f(x,y) 这样一个滤波核作卷积。对于离散的图像来说,一阶微分的数学表达相当于两个相邻像素的差值,根据选择的梯度算子不同,效果可能有所不同,但是基本原理不会变化。比如 sobel 算子也可以计算梯度,本质也是通过差分计算,但是用到了前后向序列的信息,同时为每个元素附加权重。 转自:https://www.cnblogs.com/yanghh/.转载 2021-04-13 17:46:04 · 395 阅读 · 0 评论 -
图像卷积与滤波的一些知识点
图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前在学习CNN的时候,有对卷积进行一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。一、线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我...转载 2021-04-13 17:19:17 · 345 阅读 · 0 评论 -
CNN的平移不变性是什么?
什么是平移不变性 不变性 不变性意味着即使目标的外观发生了某种变化,但是你依然可以把它识别出来。这对图像分类来说是一种很好的特性,因为我们希望图像中目标无论是被平移,被旋转,还是被缩放,甚至是不同的光照条件、视角,都可以被成功地识别出来。 所以上面的描述就对应着各种不变性: 平移不变性:Translation Invariance旋转/视角不变性:Ratation/Viewpoint Invariance尺度不变性:Size Invariance光照不变性:...转载 2021-04-13 16:00:36 · 1174 阅读 · 1 评论