numpy
夏日清风有你
研究深度学习,类脑计算、大模型、高性能计算、云计算和边缘计算领域。
展开
-
np.where 的用法记录
np.where 的用法原创 2022-10-29 22:48:32 · 388 阅读 · 0 评论 -
numpy 与 torch中压缩、扩展维度的方法
numpy 与 torch中压缩、扩展维度的方法转载 2022-10-20 21:45:05 · 1244 阅读 · 0 评论 -
PIL,cv2读取类型及 numpy,tensor格式转换
PIL,cv2读取类型及转换转载 2022-07-27 21:06:49 · 2340 阅读 · 1 评论 -
数据增强旋转
数据增强原创 2022-06-09 21:41:06 · 409 阅读 · 0 评论 -
卷积核类型简介
卷积核类型简介一个简短的介绍卷积使用“kernel”从输入图像中提取某些“特征”。kernel是一个矩阵,可在图像上滑动并与输入相乘,从而以某种我们期望的方式增强输出。看下面的GIF。上面的kernel可用于锐化图像。但是这个kernel有什么特别之处呢?考虑下图所示的两个输入图像。第一个图像,中心值为3 * 5 + 2 * -1 + 2 * -1 + 2 * -1 + 2 * -1 =7,值3增加到7。第二个图像,输出是1 * 5 + 2 * -1 + 2 * -1 + 2 * -1 + 2 * -1转载 2022-05-16 17:15:06 · 2687 阅读 · 0 评论 -
pytorch实现残差网络RestNet
pytorch_5.11 残差网络--RestNet </h2> <div class="postbody"> <div id="cnblogs_post_body" class="blogpost-body cnblogs-markdown">了解残差网络ResNet是何凯明在2015年提出的一种网络结构ResNet又名残差神经网络,指的是在传统卷积神经网络中加入残差学习(res...转载 2022-04-26 15:36:51 · 1128 阅读 · 0 评论 -
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.报错
添加程序(一定要添加在包的最前面)import osos.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"原创 2022-04-25 15:25:35 · 907 阅读 · 0 评论 -
解决错误TypeError: float() argument must be a string or a number, not ‘_NoValueType‘_
pytorch 中常见的numpy版本问题报错,本人深受困扰以下三个问题都是numpy 包版本的问题(本人遇到:2,3):1:UserWarning: Failed to initialize NumPy: No module named ‘numpy.core._multiarray_umath‘2: RuntimeError: implement_array_function method already has a docstring3:TypeError: float() argument原创 2022-04-23 22:26:05 · 9444 阅读 · 0 评论 -
opencv 绘图报错 Layout of the output array img
code 中的小问题很困扰啊使用plt 显示保存图片,numpy 通道顺序的问题opencv 绘图报错(仅对于plt加载的图片进行绘图时报错)import torchimport matplotlib.pyplot as pltimport numpy as npimgs = np.ones((3,256,256))imgs = (imgs * 255).transpose(2, 1, 0)imgs_ = imgs.astype(np.uint8).copy()print('imgs:'原创 2022-03-16 12:03:40 · 4024 阅读 · 0 评论 -
np 实现数组维度扩展
设图像大小为n * n问题为:将 n*n 数组变为 n*n*3*# 1 numpy实现: temp = np.expand_dims(img,axis=2).repeat(3,axis=2)# 3```python # 2 pytorch实现tensor.repeat() [3链接详情](https://blog.csdn.net/qq_41568188/article/details/107250635?ops_request_misc=%257B%2522request%255Fi原创 2022-01-06 12:11:32 · 2684 阅读 · 0 评论 -
RGB图像是3通道才有颜色,1通道只能是灰色
import matplotlib.pyplot as pltimport numpy as npimport cv2通道是3mask_ = np.zeros((256,256,3))cv2.circle(mask_, (60, 60), 30, (0, 255, 0), 2) # x,y,r,color,thicknessplt.title('match_template')# plt.imshow(target,cmap='gray')plt.imshow(mask_, cmap='原创 2022-01-06 11:27:34 · 1070 阅读 · 0 评论 -
plt.savefig()的用法以及保存路径
if epoch % 10== 0: plt.title('ber:{:.3f},a: {:.3f},b:{:.3f},snr: {:.3f}'.format( error_rate, a, b,M )) plt.plot(r3) # 绘制波形 # save_image(r3, './img/fake_images-{}.png'.format(epoch + 1)...转载 2021-12-12 22:37:40 · 15494 阅读 · 4 评论 -
np.vstack 函数实现多个数组的叠加(垂直、水平)
简介:np.vstack((a, b))垂直堆叠,要求两个数组矩阵具有相同的列数(以二维数组为例)np.hstack((a, b)) *注意是双扩后*水平堆叠,要求两个数组矩阵具有相同的行数(以二维数组为例)方法一:import numpy as npx = np.zeros((1,2,2))y = np.ones((1,2,2))z = np.ones((1,2,2))temp = np.vstack((x,y,z))方法二:# 写入listlist =[]原创 2021-11-14 11:22:21 · 4574 阅读 · 0 评论 -
numpy 中的数组条件索引 where
import numpy as npa = np.array([1,2,3,-1,-2,9])where 的条件索引使用:c = np.where(a==3)print(c) # tubleprint(c[0])结果:ss = np.where((a>=1))ss_value = a[ss]print(ss[0]) # 对应的索引print(ss_value) # 索引对应的值结果:在原数组中修改值:a[a>0] = 0 # 在原数组上进行修改print(原创 2020-12-22 11:06:54 · 1443 阅读 · 0 评论 -
numpy 中数组的堆叠方法
**环境 ** Anaconda 3 Python 3.6 Numpy 1.14.3 二、功能用途及官方说明 1、hstack 功能:沿水平方向堆叠数组(numpy array) 用途举例:机器学习数据集准备过程中,可以用于将数据列与标签列在水平方向上合并,从而得到带标签的数据集 官方说明:https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.hstack.html#numpy.hstack 2、vst.转载 2020-11-04 16:25:04 · 3916 阅读 · 0 评论 -
Anaconda下的juputer notebook 更改起始目录
打开 Anaconda Prompt输入命令 jupyter notebook --generate-config打开C:/Users/你的户/.jupyter/jupyter_notebook_config.py修改 #c.NotebookApp.notebook_dir = '' 为 c.NotebookApp.notebook_dir = '你想要默认打开的文件夹'开始菜单找到 jupyter notebook 快捷键,右键->更多->打开文件所在位置,找打快捷方式在文件中转载 2020-10-27 21:25:25 · 235 阅读 · 0 评论 -
python 中的求导和偏导——diff函数和symbols函数
diff(func,x,n) 其中,func是要求导的函数,x是要对其求导的变量,n是可选的,表示求n阶导数,默认为1阶导数。 例子1 注意,在用diff进行求导之前,需要用symbols函数定义变量 from sympy import difffrom sympy import symbolsdef func(x): return x**4x = symbols("x")print(diff(func(x),x))输出结果为:4*x**3 例子2(求多阶导数) from sym转载 2020-10-26 20:32:56 · 21571 阅读 · 4 评论 -
sklearn 数据标准化 和 归一化处理
from sklearn import preprocessing## z- score 标准化 1scaler = preprocessing.StandardScaler().fit(x_train)x_train = scaler.transform(x_train)x_train,np.max(x_test),np.min(x_test)x_test = scaler.transform(x_test)## max - min 标准化 2x_train = preprocessin原创 2020-10-14 11:49:41 · 483 阅读 · 0 评论 -
iris 数据转化为脉冲序列
引入包文件import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasets# step1: 加载数据集iris = datasets.load_iris()X = iris.datay = iris.targetX.shape,y.shape# step2: 数据集的划分,测试数据集和训练数据集# 数据集划分np.random.seed(666)shuffle_indexs = np.rand原创 2020-10-14 10:31:03 · 26 阅读 · 1 评论 -
Python的高级编程map的使用
map的使用class map(func, *iterables)传入参数X1 def sum(a): return a+a if __name__ == '__main__': Ls1 = [1,2,4] r = map(sum, Ls1) print(tuple(r))运行结果:(2, 4, 8)传入参数X1,X2 def sum(a,b): return a+b if __name__ == '__m原创 2020-09-22 22:07:35 · 359 阅读 · 0 评论 -
Received Filed (RF) 计算------之补全
################################################## 补全################################################## 计算 padding: (x-3+1)= 5 ,x= 7, padding=(7-5)/2=1import numpy as npfrom matplotlib import pyplot as pltimport imageio## 输入原始矩阵img, 卷积核w,## 补全的坐标ra原创 2020-09-18 20:17:26 · 151 阅读 · 0 评论 -
Received Filed (RF) 计算
import numpy as np### 不补全卷积运算""" 实现 5*5的w矩阵 与 核为3*3的矩阵ker卷积 得到3*3的矩阵的过程一共生成3*3的计算矩阵 (5-3+1)*(5-3+1)= 3*3 = 9个每个3*3 的矩阵一共9个元素,最终形成9*9的矩阵来存储要计算的矩阵""""""k_r : 卷积核的长k_1 : 卷积核的宽w_r : 原始矩阵的长w_l : 原始矩阵的宽"""## 得到要计算的矩阵def pro_M(k_r,k_1,w_r,w_l): t原创 2020-09-18 20:12:39 · 248 阅读 · 0 评论 -
numpy数组轴详解
概述按照图一中aixs=0,对aixs=0上下对应的数据进行相加在学习numpy的时候,最难理解的就是轴的概念,我们知道坐标系中有轴的概念,那么两个轴是否有关联呢?为...转载 2020-02-02 18:16:33 · 1331 阅读 · 0 评论