- 博客(1)
- 收藏
- 关注
转载 对称矩阵特征向量正交的推导
对于对称方阵A,如有特征解对应特征向量,特征解对应特征向量,根据特征向量的定义,有:如和正交,则必有。欲证明此式,可构造非零表达式常数K,使得,而因和是不同的特征解,即,故K式可为,下面来构造此式:① 左乘,得:②左乘,得:由于和都是列向量,故结果为1X1矩阵,亦即,(3)式等价于:(4) -(5)式,得(6)式等号左边为:,又因A是对称矩阵,故有,故(7)可化为:故(6)等式右边,因,故必为0,亦即和正交,证毕。...
2020-08-21 18:25:32 9564
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人