对称矩阵特征向量正交的推导

对于对称方阵A,如有特征解\lambda _{1}对应特征向量x_{1},特征解\lambda _{2}对应特征向量x_{2},根据特征向量的定义,有:

A * x_{1} =\lambda _{1} * x_{1} \, \, \, \, \, \, ( 1 )

A * x_{2} =\lambda _{2} * x_{2} \, \, \, \, \, \, ( 2 )

x_{1}x_{2}正交,则必有x_{1}^{T}x_{2}=0

欲证明此式,可构造非零表达式常数K,使得K*(x_{1}^{T}x_{2})=0,而因\lambda _{1}\lambda _{2}是不同的特征解,即\lambda _{1}\neq \lambda _{2},故K式可为\lambda _{2}-\lambda _{1},下面来构造此式:

① 左乘x_{2}^{^{T}},得:

 x_{2}^{T}*A * x_{1} =\lambda _{1} * x_{2}^{T}*x_{1} \, \, \, \, \, \, ( 3 )

②左乘x_{1}^{^{T}},得:

 x_{1}^{T}*A * x_{2} =\lambda _{2} * x_{1}^{T}*x_{2} \, \, \, \, \, \, ( 4 )

x_{2}^{T}x_{1}由于x_{1}x_{2}都是列向量,故结果为1X1矩阵,亦即x_{2}^{T}x_{1}=x_{1}^{T}x_{2}, (3)式等价于:

 x_{2}^{T}*A * x_{1} =\lambda _{1} * x_{1}^{T}*x_{2} \, \, \, \, \, \, ( 5 )

(4) - (5)式,得

x_{1}^{T}*A * x_{2}-x_{2}^{T}*A * x_{1} =(\lambda _{2}-\lambda _{1}) * x_{1}^{T}*x_{2} \, \, \, \, \, \, ( 6 )

(6)式等号左边为:

\sum x_{1i}*A_{ij}*x_{2j}-\sum x_{2i}*A_{ij}*x_{1j}\: \; \; (7)

又因A是对称矩阵,故有A_{ij}=A_{ji},故(7)可化为:

\sum x_{1i}*A_{ij}*x_{2j}-\sum x_{2i}*A_{ij}*x_{1j} ={\color{Blue} \sum x_{1i}*A_{ij}*x_{2j}-\sum x_{2i}*A_{ji}*x_{1j}} =\sum x_{1i}*A_{ij}*x_{2j}-\sum x_{1i}*A_{ij}*x_{2j}=0

故(6)等式右边

{\color{Blue} (\lambda _{2}-\lambda _{1}) * x_{1}^{T}*x_{2} =0}

\lambda _{1}\neq \lambda _{2},故x_{1}^{T}x_{2}必为0,亦即x_{1}x_{2}正交,证毕。

但如果{\color{Blue} \lambda _{1}= \lambda _{2}},那么不一定正交,但可以选出正交的向量。

因此对称矩阵可以写成:\bg_white A=Q\Lambda Q^{T}(其中Q为标准正交矩阵orthonormal matrix,\Lambda为由A的特征值组成的diagonal matrix)

 

 

注:从https://blog.csdn.net/btchengzi0/article/details/57075361###整理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值