对于对称方阵A,如有特征解对应特征向量
,特征解
对应特征向量
,根据特征向量的定义,有:
如和
正交,则必有
。
欲证明此式,可构造非零表达式常数K,使得,而因
和
是不同的特征解,即
,故K式可为
,下面来构造此式:
① 左乘,得:
②左乘,得:
由于
和
都是列向量,故结果为1X1矩阵,亦即
, (3)式等价于:
(4) - (5)式,得
(6)式等号左边为:
,
又因A是对称矩阵,故有,故(7)可化为:
故(6)等式右边
,
因,故
必为0,亦即
和
正交,证毕。
但如果,那么不一定正交,但可以选出正交的向量。
因此对称矩阵可以写成:(其中Q为标准正交矩阵orthonormal matrix,
为由A的特征值组成的diagonal matrix)
注:从https://blog.csdn.net/btchengzi0/article/details/57075361###整理