算法之归并排序算法(merge sort)

归并排序算法

1.算法原理


归并排序算法是分治法(Divide-and-Conquer)的典型应用。其操作的步骤如下:

  • Divide:把n个元素的序列分为两个元素个数为n/2的子序列。
  • Conquer:递归的调用归并排序算法对两个子序列进行排序
  • Combine:对排好序的子序列进行合并,得到最后排序的结果。


    归并算法用示意图表示如下:


    归并排序算法的伪代码如下:

    MERGE_SORT(A, p, r)
    	if p < r
    		q = (p + r) / 2
    		MERGE_SORT(A, p, q)
    		MERGE_SORT(A, q + 1, r)
    		MERGE(A, p, q, r)


    两个子序列的合并(MERGE)过程如下列示意图所示:




    其中合并(MERGE)的伪代码如下:

    MERGE(A, p, q, r)
    	n1 = q - p + 1
    	n2 = r - q
    	Let L[0.. n1] and R[0..n2] be new arrays
    	for i = 0 to n1 - 1
    		L[i] = A[p + i]
    	for j = 0 to n2 - 1
    		R[j] = A[q + j]
    
    	i = j = 0;
    	for k = p to r 
    		if L[i] <= R[j]
    			A[k] = L[i]
    			i = i + 1
    		else
    			A[k] = R[j]
    			j = j + 1

    2.算法源代码实现


    归并算法的C++代码实现如下

    #include <iostream>
    using namespace std;
    
    //将有二个有序数列a[first...mid]和a[mid...last]合并。
    void __merge(int a[], int first, int mid, int last, int temp[])
    {
    	int i = first, j = mid + 1;
    	int m = mid,   n = last;
    	int k = 0;
    
    	while (i <= m && j <= n)
    	{
    		if (a[i] <= a[j])
    			temp[k++] = a[i++];
    		else
    			temp[k++] = a[j++];
    	}
    
    	while (i <= m)
    		temp[k++] = a[i++];
    
    	while (j <= n)
    		temp[k++] = a[j++];
    
    	for (i = 0; i < k; i++)
    		a[first + i] = temp[i];
    }
    
    void __merge_sort(int a[], int first, int last, int temp[])
    {
        if(first < last)
        {
            int mid = (first + last) / 2;
            __merge_sort(a, first, mid, temp);
            __merge_sort(a, mid + 1, last, temp);
            __merge(a, first, mid, last, temp);
        }
    }
    bool MergeSort(int a[], int n)
    {
        int *p = new int[n];
        if(p == NULL)
        {
            return false;
        }
        else
        {
            __merge_sort(a, 0, n - 1, p);
            delete[] p;
            return true;
        }
    }
    
    int main()
    {
        const int LEN = 10;
    
        int a[LEN] = {23, 40, 45, 19, 12, 16, 90, 39, 87, 71};
    
        cout << "Before the merge sort, the Array is:" << endl;
        for(int i = 0; i < LEN; ++i)
        {
            cout << "a[ " << i + 1 << " ] is: "<< a[i] << endl;
        }
        cout << endl;
    
        MergeSort(a, LEN);
        cout << "After the merge sort, the Array is:" << endl;
        for(int i = 0; i < LEN; ++i)
        {
            cout << "a[ " << i + 1 << " ] is: "<< a[i] << endl;
        }
    
        return 0;
    }
    

    3.算法复杂度


    该算法的时间复杂度为O(nlogn)

    4.内容来源


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值