1119. Pre- and Post-order Traversals (30)

389 篇文章 1 订阅
140 篇文章 0 订阅

1119. Pre- and Post-order Traversals (30)
时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B
判题程序 Special 作者 CHEN, Yue

Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences, or preorder and inorder traversal sequences. However, if only the postorder and preorder traversal sequences are given, the corresponding tree may no longer be unique.
Now given a pair of postorder and preorder traversal sequences, you are supposed to output the corresponding inorder traversal sequence of the tree. If the tree is not unique, simply output any one of them.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=30), the total number of nodes in the binary tree. The second line gives the preorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first printf in a line “Yes” if the tree is unique, or “No” if not. Then print in the next line the inorder traversal sequence of the corresponding binary tree. If the solution is not unique, any answer would do. It is guaranteed that at least one solution exists. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input 1:
7
1 2 3 4 6 7 5
2 6 7 4 5 3 1
Sample Output 1:
Yes
2 1 6 4 7 3 5
Sample Input 2:
4
1 2 3 4
2 4 3 1
Sample Output 2:
No
2 1 3 4

思路:如果只有先序和后续,那么只有两种情况能唯一确定一棵树:
pre: Root L post: L Root
pre: R Root post: Root R
因此判断是否存在这两种情况以外的情况。以题目中的例子为例:
1 2 3 4
2 4 3 1
(1) [2 3 4]
[2 4 3] (1)

根节点为1,1的左孩子为2,在后序当中,位于2之前没有元素,即2无孩子节点,故3划分给根节点1的右孩子
(2) [3 4]
[3 4] (2)

对于根节点为3,其左孩子节点为4,在后序当中,除了根节点3,不存在其他元素,即4的孩子个数为0,先序当中此段划分已不存在其他元素,因此4即可以作为3的左孩子,也可作为右孩子,树不唯一

#define _CRT_SECURE_NO_WARNINGS
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
const int MaxN = 32;
int n, cur = 0;
typedef struct tnode {
    int data;
    struct tnode *lchild;
    struct tnode *rchild;
    tnode() { lchild = rchild = nullptr; }
}TNode, *PTNode;

bool Unique = true;
int pre[MaxN], post[MaxN];

void InOrder(PTNode root) {
    if (!root)return;
    InOrder(root->lchild);
    cout << root->data;
    ++cur; if (cur != n)cout << " ";
    InOrder(root->rchild);
    delete root;
}


PTNode CreateTree(int preL, int preR, int postL, int postR) {
    if (preL > preR)return nullptr;
    PTNode root = new TNode;
    root->data = pre[preL];
    if (preL == preR) return root;

    int postidx = postR;
    while (post[postidx] != pre[preL + 1] && postidx > postL) --postidx;

    int num = postidx - postL;//以pre[preL + 1]为根节点的孩子个数
    if (num == preR - preL - 1) Unique = false; //如果pre[preL + 1]节点的孩子个数与前序遍历中的剩余的节点数相同,则不唯一
    root->lchild = CreateTree(preL + 1, preL + num + 1, postL, postidx);
    root->rchild = CreateTree(preL + num + 2, preR, postidx + 1, postR - 1);

    return root;
}



int main() {
#ifdef _DEBUG
    freopen("data.txt", "r+", stdin);
#endif // _DEBUG
    std::ios::sync_with_stdio(false);

    cin >> n;
    for (int i = 0; i < n; ++i) cin >> pre[i];
    for (int i = 0; i < n; ++i) cin >> post[i];

    PTNode root = CreateTree(0, n - 1, 0, n - 1);
    Unique ? (cout << "Yes\n") : (cout << "No\n");
    InOrder(root);
    cout << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值