目录
一、背景
使用GPU进行矩阵数据计算加速可以显著提高计算效率,尤其是在处理大规模矩阵运算时。以下是一个简单的示例,演示如何使用CUDA(Compute Unified Device Architecture)在C++中进行矩阵乘法运算。CUDA是NVIDIA开发的并行计算平台和编程模型,允许使用GPU加速计算任务。
二、环境设置
- 确保我们先有一张支持CUDA的NVIDIA GPU。
- 安装CUDA Toolkit,这将包含所需的编译器、库和工具。
- 配置CUDA开发环境(通常包括设置环境变量)。
三、示例代码
以下是一个简单的CUDA程序,用于矩阵乘法: