[b]1.1 算法 Alogrithm[/b]
[b]算法E[/b](欧几里德算法)求两个数的最大公约数
[b]算法的特性:[/b]
1)有穷性
2)确定性
3)输入
4)输出
5)可行性
“如果N是下一期彩票的中奖号码,则去投注站买10注N” 就是一个没有可行性的代表
习题3
算法F:
真惭愧,看了答案才做出来。思路完全走偏了。
算法E可以变换成一个递归公式:
令 R0 = a, R1 = b, Rn = R(n-2) / R(n-1)
FOR n in [2. infinity):
IF Rn == 0:
return R(n-1)
看完第一章,真是深深的感到C语言的伟大。
至少不需要在写算法的时候自己发明一种机器语言。
[b]算法E[/b](欧几里德算法)求两个数的最大公约数
//greatest common divisor
int gcd(int a, int b)
{
int r;
assert(a * b != 0);
r = a % b;
while(r != 0) {
a = b;
b = r;
r = a % b;
}
return b;
}
[b]算法的特性:[/b]
1)有穷性
2)确定性
3)输入
4)输出
5)可行性
“如果N是下一期彩票的中奖号码,则去投注站买10注N” 就是一个没有可行性的代表
习题3
算法F:
int gcd(int a, int b)
{
assert(a * b != 0);
while(1) {
a = a % b;
if(a == 0) {
return b;
}
b = b % a;
if(b == 0) {
return a;
}
}
}
真惭愧,看了答案才做出来。思路完全走偏了。
算法E可以变换成一个递归公式:
令 R0 = a, R1 = b, Rn = R(n-2) / R(n-1)
FOR n in [2. infinity):
IF Rn == 0:
return R(n-1)
看完第一章,真是深深的感到C语言的伟大。
至少不需要在写算法的时候自己发明一种机器语言。