BZOJ 1051 [HAOI2006]受欢迎的牛
题目
Description
每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。
Input
第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)
Output
一个数,即有多少头牛被所有的牛认为是受欢迎的。
Sample Input
3 3
1 2
2 1
2 3
Sample Output
1
HINT
100%的数据N<=10000,M<=50000
题解
tarjan将环缩成点以后,计算各点的出度,很明显出度为0的点(所代表的点的个数)就是我们需要的输出的
代码
#include<cstdio>
using namespace std;
int n,m,now,tot,top,sum,ans;
int lnk[10005],dfn[10005],s[10005],mark[10005],low[10005],q[10005],num[10005],c[10005];
struct edge
{
int nxt,y;
} e[50005];
int readln()
{
int x=0;
char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while ('0'<=ch&&ch<='9') x=x*10+ch-48,ch=getchar();
return x;
}
void add(int x,int y)
{
tot++;e[tot].nxt=lnk[x];lnk[x]=tot;e[tot].y=y;
}
int min(int x,int y){return x<y?x:y;}
void tarjan(int x)
{
low[x]=dfn[x]=++now;
mark[x]=1;s[++top]=x;
for (int i=lnk[x];i;i=e[i].nxt)
{
int y=e[i].y;
if (!dfn[y]) tarjan(y),low[x]=min(low[x],low[y]);
else if (mark[y]) low[x]=min(low[x],dfn[y]);
}
if (low[x]==dfn[x])
{
sum++;
while (top!=0)
{
int tmp=s[top];
top--;
q[tmp]=sum;
num[sum]++;
if (tmp==x) break;
}
}
}
int main()
{
n=readln();m=readln();
for (int i=1;i<=m;i++)
{
int x=readln(),y=readln();
add(x,y);
}
for (int i=1;i<=n;i++) if (!mark[i]) tarjan(i);
for (int i=1;i<=n;i++)
for (int j=lnk[i];j;j=e[j].nxt)
if (q[i]!=q[e[j].y]) c[q[i]]++;
for (int i=1;i<=sum;i++) if (c[i]==0) ans+=num[i];
printf("%d",ans);
return 0;
}