Description
每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。
Input
第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)
Output
一个数,即有多少头牛被所有的牛认为是受欢迎的。
Sample Input
3 3
1 2
2 1
2 3
Sample Output
1
HINT
100%的数据N<=10000,M<=50000
Solution
求出强连通分量,缩点,建图
此时若出度为0的强连通分量不止一个,则ans=0,若只有一个,那就是该该强连通分量所包含的点的个数
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<stack>
#define Min(a,b) (a<b?a:b)
using namespace std;
stack<int>s;
int n,m,Index=0,belong[10005],cnt2=0;
int dfn[10005],low[10005],head[10005],cnt=0,num[10005];
int head2[10005],cnt3=0;
bool visited[10005],instack[10005];
struct Node{
int next,to;
}Edges[50005],Edges2[50005];
void add(int u,int v)
{
Edges[++cnt].next=head[u];
Edges[cnt].to=v;
head[u]=cnt;
}
void add2(int u,int v)
{
Edges2[++cnt3].next=head2[u];
head2[u]=cnt3;
Edges2[cnt3].to=v;
}
void tarjan(int u)
{
dfn[u]=low[u]=++Index;
visited[u]=1;
s.push(u);
instack[u]=1;
for(int i=head[u];~i;i=Edges[i].next)
{
int t=Edges[i].to;
if(!visited[t])
{
tarjan(t);
low[u]=Min(low[u],low[t]);
}
else if(instack[t])
{
low[u]=Min(low[u],dfn[t]);
}
}
if(low[u]==dfn[u])
{
cnt2++;
int v;
do
{
v=s.top();
belong[v]=cnt2;
num[cnt2]++;
s.pop();
instack[v]=0;
}
while(v!=u);
}
}
void build()
{
for(int i=1;i<=n;i++)
{
for(int j=head[i];~j;j=Edges[j].next)
{
int v=Edges[j].to;
if(belong[v]!=belong[i])
{
add2(belong[i],belong[v]);
}
}
}
}
int main()
{
memset(head,-1,sizeof(head));
memset(head2,-1,sizeof(head2));
scanf("%d%d",&n,&m);
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=1;i<=n;i++)
{
if(!visited[i])tarjan(i);
}
build();
int ans=0;
for(int i=1;i<=cnt2;i++)
{
if(head2[i]==-1)
{
if(ans){
ans=0;break;
}
else ans=num[i];
}
}
printf("%d\n",ans);
return 0;
}