[BZOJ 1051][HAOI2006]受欢迎的牛(强连通分量、缩点)

Description


  每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。

Input


  第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)

Output


  一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input


3 3
1 2
2 1
2 3

Sample Output


1

HINT


100%的数据N<=10000,M<=50000

Solution


求出强连通分量,缩点,建图
此时若出度为0的强连通分量不止一个,则ans=0,若只有一个,那就是该该强连通分量所包含的点的个数

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<stack>
#define Min(a,b) (a<b?a:b) 
using namespace std;
stack<int>s;
int n,m,Index=0,belong[10005],cnt2=0;
int dfn[10005],low[10005],head[10005],cnt=0,num[10005];
int head2[10005],cnt3=0; 
bool visited[10005],instack[10005];
struct Node{
    int next,to;
}Edges[50005],Edges2[50005];
void add(int u,int v)
{
    Edges[++cnt].next=head[u];
    Edges[cnt].to=v;
    head[u]=cnt;
}
void add2(int u,int v)
{
    Edges2[++cnt3].next=head2[u];
    head2[u]=cnt3;
    Edges2[cnt3].to=v;
}
void tarjan(int u)
{
    dfn[u]=low[u]=++Index;
    visited[u]=1;
    s.push(u);
    instack[u]=1;
    for(int i=head[u];~i;i=Edges[i].next)
    {
        int t=Edges[i].to;
        if(!visited[t])
        {
            tarjan(t);
            low[u]=Min(low[u],low[t]);
        }
        else if(instack[t])
        {
            low[u]=Min(low[u],dfn[t]);
        }
    }
    if(low[u]==dfn[u])
    {
        cnt2++;
        int v;
        do
        {
            v=s.top();
            belong[v]=cnt2;
            num[cnt2]++;
            s.pop();
            instack[v]=0;
        }
        while(v!=u);
    }
}
void build()
{
    for(int i=1;i<=n;i++)
    {
        for(int j=head[i];~j;j=Edges[j].next)
        {
            int v=Edges[j].to;
            if(belong[v]!=belong[i])
            {
                add2(belong[i],belong[v]);
            }
        }
    }
}
int main()
{
    memset(head,-1,sizeof(head));
    memset(head2,-1,sizeof(head2)); 
    scanf("%d%d",&n,&m);
    int u,v;
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&u,&v);
        add(u,v);
    }
    for(int i=1;i<=n;i++)
    {
        if(!visited[i])tarjan(i);
    }
    build();
    int ans=0;
    for(int i=1;i<=cnt2;i++)
    {
        if(head2[i]==-1)
        {
            if(ans){
                ans=0;break;
            }
            else ans=num[i];
        }
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值