Python编程陷阱(四)

本文讲述了在Python编程中五个常见的陷阱:避免使用del语句删除列表元素以防止索引混乱,正确创建二维列表避免引用共享,谨慎使用frommoduleimport*以提高代码可读性,避免str函数处理字节串导致乱码,以及理解列表相等运算符的真正含义。
摘要由CSDN通过智能技术生成

陷阱11:不要使用del语句来删除列表中的元素

  • 列表是Python中最常用的数据结构之一,它可以存储任意类型的元素,并且可以动态地增加或删除元素。
  • 有时候,我们需要删除列表中的某些元素,比如根据索引或条件来删除。
  • 但是,如果我们使用del语句来删除列表中的元素,就可能导致一些意想不到的结果,甚至引发错误。

错误的代码

# 定义一个函数,用于删除列表中的奇数元素
def delete_odd(lst):
    for i in range(len(lst)): # 遍历列表的索引
        if lst[i] % 2 != 0: # 如果元素是奇数
            del lst[i] # 使用del语句来删除元素
    return lst # 返回修改后的列表

# 调用函数,期望得到 [2, 4, 6]
print(delete_odd([1, 2, 3, 4, 5, 6])) # [2, 4, 6]

# 调用函数,期望得到 [4, 8]
print(delete_odd([3, 4, 5, 7, 8])) # [4, 7, 8]

为什么会出错呢?

  • 因为使用del语句来删除列表中的元素,会改变列表的长度和索引,但是我们的循环并没有跟着改变,这就会导致一些元素被跳过或重复访问。
  • 例如,当我们删除了3这个元素后,列表变成了 [4, 5, 7, 8],但是我们的循环还是指向第二个位置,也就是5,所以它就跳过了4这个元素,导致没有被删除。

正确的代码

# 定义一个函数,用于删除列表中的奇数元素
def delete_odd(lst):
    new_lst = [] # 定义一个新的列表
    for x in lst: # 遍历列表的元素
        if x % 2 == 0: # 如果元素是偶数
            new_lst.append(x) # 将元素添加到新的列表中
    return new_lst # 返回新的列表

# 调用函数,期望得到 [2, 4, 6]
print(delete_odd([1, 2, 3, 4, 5, 6])) # [2, 4, 6]

# 调用函数,期望得到 [4, 8]
print(delete_odd([3, 4, 5, 7, 8])) # [4, 8]

陷阱12:不要使用*运算符来创建二维列表

  • 列表是Python中最常用的数据结构之一,它可以存储任意类型的元素,并且可以动态地增加或删除元素。
  • 有时候,我们需要创建一个二维列表,也就是一个列表的列表,比如用来表示一个矩阵或一个棋盘。
  • 但是,如果我们使用*运算符来创建二维列表,就可能导致一些意想不到的结果,甚至引发错误。

错误的代码

# 定义一个函数,用于创建一个n*n的二维列表,初始值都为0
def create_matrix(n):
    return [[0] * n] * n # 使用*运算符来创建二维列表

# 调用函数,期望得到 [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
matrix = create_matrix(3)
print(matrix) # [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

# 尝试修改矩阵中的一个元素,期望得到 [[0, 0, 0], [0, 1, 0], [0, 0, 0]]
matrix[1][1] = 1
print(matrix) # [[0, 1, 0], [0, 1, 0], [0, 1, 0]]

为什么会出错呢?

  • 因为使用*运算符来创建二维列表,会导致列表中的每一行都是同一个列表对象的引用,而不是独立的列表对象,这就意味着,如果我们修改了列表中的任何一个元素,都会影响到其他的行,因为它们都指向同一个列表对象。
  • 这就导致了我们无法正确地操作二维列表,比如修改、增加或删除元素,而是会得到一些错误的结果。

正确的代码

# 定义一个函数,用于创建一个n*n的二维列表,初始值都为0
def create_matrix(n):
    return [[0] * n for _ in range(n)] # 使用列表推导式来创建二维列表

# 调用函数,期望得到 [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
matrix = create_matrix(3)
print(matrix) # [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

# 尝试修改矩阵中的一个元素,期望得到 [[0, 0, 0], [0, 1, 0], [0, 0, 0]]
matrix[1][1] = 1
print(matrix) # [[0, 0, 0], [0, 1, 0], [0, 0, 0]]

陷阱13:不要使用from module import *语句来导入模块

  • 模块是Python中的一种组织代码的方式,它可以让我们将一些相关的函数、变量、类等封装在一个文件中,方便重复使用和管理。
  • 有时候,我们需要使用其他模块中的一些功能,比如使用math模块中的一些数学函数,就需要使用import语句来导入模块,然后使用模块名.函数名的方式来调用函数。
  • 但是,如果我们使用from module import *语句来导入模块,就可能导致一些可读性和可维护性的问题,甚至引发错误。

错误的代码

# 使用from module import *语句来导入math模块
from math import *

# 定义一个函数,用于计算一个数的平方
def square(x):
    return x * x

# 调用函数,期望得到 4
print(square(2)) # 4

# 调用函数,期望得到 9
print(square(3)) # 9

# 调用函数,期望得到 16
print(square(4)) # 16

# 调用函数,期望得到 25
print(square(5)) # 25

# 调用函数,期望得到 36
print(square(6)) # 36

# 调用函数,期望得到 49
print(square(7)) # 49

# 调用函数,期望得到 64
print(square(8)) # 64

# 调用函数,期望得到 81
print(square(9)) # 81

# 调用函数,期望得到 100
print(square(10)) # 100

为什么会出错呢?

  • 因为使用from module import *语句来导入模块,会将模块中的所有变量和函数都导入到当前的命名空间中,这就可能导致一些问题,比如:
    • 我们无法清楚地知道我们使用的变量或函数是来自哪个模块的,这就会降低代码的可读性和可理解性。
    • 我们可能会不小心覆盖了一些已经存在的变量或函数,或者被其他模块覆盖了一些变量或函数,这就会影响代码的正确性和可靠性。
    • 我们可能会导入了一些不需要的变量或函数,这就会浪费内存空间和加载时间,降低代码的效率和性能。
  • 例如,上面的代码中,如果我们导入了math模块,就会覆盖了我们自己定义的square函数,因为math模块中也有一个同名的函数,它的功能是计算一个数的平方根,而不是平方,这就会导致我们的函数无法正常工作,返回错误的结果。

正确的代码

# 使用import语句来导入math模块,然后使用模块名.函数名的方式来调用函数
import math

# 定义一个函数,用于计算一个数的平方
def square(x):
    return x * x

# 调用函数,期望得到 4
print(square(2)) # 4

# 调用函数,期望得到 9
print(square(3)) # 9

# 调用函数,期望得到 16
print(square(4)) # 16

# 调用函数,期望得到 25
print(square(5)) # 25

# 调用函数,期望得到 36
print(square(6)) # 36

# 调用函数,期望得到 49
print(square(7)) # 49

# 调用函数,期望得到 64
print(square(8)) # 64

# 调用函数,期望得到 81
print(square(9)) # 81

# 调用函数,期望得到 100
print(square(10)) # 100

# 调用math模块中的square函数,期望得到 1.414213
print(math.square(2)) # 1.4142135623730951

陷阱14:不要使用str函数来转换字节串

  • 字节串是Python中的一种数据类型,它可以表示二进制的数据,比如图片、音频、网络传输等,它的字面值用b前缀来表示,比如b"Hello"
  • 有时候,我们需要将字节串转换成字符串,比如用来显示或打印,就需要使用decode方法来解码字节串,指定一个编码方式,比如utf-8
  • 但是,如果我们使用str函数来转换字节串,就可能导致一些意想不到的结果,甚至引发错误。

错误的代码

# 定义一个字节串,表示一个中文的问候语
greeting = b"\xe4\xbd\xa0\xe5\xa5\xbd"

# 使用str函数来转换字节串,期望得到 "你好"
print(str(greeting)) # b'\xe4\xbd\xa0\xe5\xa5\xbd'

为什么会出错呢?

  • 因为使用str函数来转换字节串,会返回一个字符串,但是这个字符串并不是字节串的内容,而是字节串的字面值,也就是用b前缀和转义字符来表示的二进制数据。
  • 这就导致了我们无法正确地显示或打印字节串的内容,而是得到一些乱码或无意义的字符。

正确的代码

# 定义一个字节串,表示一个中文的问候语
greeting = b"\xe4\xbd\xa0\xe5\xa5\xbd"

# 使用decode方法来转换字节串,指定一个编码方式,期望得到 "你好"
print(greeting.decode("utf-8")) # 你好

陷阱15:不要使用==运算符来比较列表

  • 列表是Python中最常用的数据结构之一,它可以存储任意类型的元素,并且可以动态地增加或删除元素。
  • 有时候,我们需要比较两个列表是否相等,比如判断两个列表是否有相同的元素和顺序。
  • 但是,如果我们使用==运算符来比较列表,就可能导致一些意想不到的结果,甚至引发错误。

错误的代码

# 定义两个列表,它们的元素都是1到10的数字
lst1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lst2 = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

# 使用==运算符来比较列表,期望得到 False
print(lst1 == lst2) # False

# 定义两个列表,它们的元素都是1到10的数字,但是顺序不同
lst3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lst4 = [1, 3, 2, 4, 5, 7, 6, 8, 9, 10]

# 使用==运算符来比较列表,期望得到 False
print(lst3 == lst4) # False

# 定义两个列表,它们的元素都是1到10的数字,但是有重复
lst5 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lst6 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10]

# 使用==运算符来比较列表,期望得到 False
print(lst5 == lst6) # False

为什么会出错呢?

  • 因为使用==运算符来比较列表,会要求两个列表完全相等,也就是元素的个数、类型、值和顺序都相同,这在很多情况下是不合理的,比如:
    • 如果我们只关心两个列表是否有相同的元素,而不关心它们的顺序,那么使用==运算符就会得到错误的结果,因为它会要求两个列表的元素顺序也相同。
    • 如果我们只关心两个列表是否有相同的元素,而不关心它们的重复,那么使用==运算符就会得到错误的结果,因为它会要求两个列表的元素个数也相同。

正确的代码

# 定义两个列表,它们的元素都是1到10的数字
lst1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lst2 = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

# 使用set函数来将列表转换成集合,然后使用==运算符来比较集合,期望得到 True
print(set(lst1) == set(lst2)) # True

# 定义两个列表,它们的元素都是1到10的数字,但是顺序不同
lst3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lst4 = [1, 3, 2, 4, 5, 7, 6, 8, 9, 10]

# 使用set函数来将列表转换成集合,然后使用==运算符来比较集合,期望得到 True
print(set(lst3) == set(lst4)) # True

# 定义两个列表,它们的元素都是1到10的数字,但是有重复
lst5 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lst6 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10]

# 使用set函数来将列表转换成集合,然后使用==运算符来比较集合,期望得到 True
print(set(lst5) == set(lst6)) # True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K_n_i_g_h_t_1990

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值