K-Means聚类算法

本文介绍了K-Means聚类算法的基本原理和应用,包括其在无监督学习中的角色,以及如何受聚类中心个数影响。讨论了K-Means的局限性,如对非球形簇的识别不足,并与PCA、NMF进行了对比。此外,展示了KMeans如何用于数据矢量化,提供了一种增强数据表示的方法。
摘要由CSDN通过智能技术生成

k均值聚类

k均值聚类是最简单也最常用的聚类算法,它试图找到代表数据特定区域的簇中心每个簇中心设置为所分配的所有数据点的平均值,如果簇的分配不再变化,那么算法结束。

无监督学习:给出的标签不具有先验意义

在make_blobs数据集上使用k均值聚类算法,并输出用训练的无监督学习模型产生的预测结果:

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

X, y = make_blobs(random_state=1)
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)

print(kmeans.predict(X))

👇这个结果给出的仅是簇标签,无先验含义。如,通过k均值聚类分类出的人物肖像,需要查看肖像才知道是你的哪位朋友。

[1 0 0 0 2 2 2 0 1 1 0 0 2 1 2 2 2 1 0 0 2 0 2 1 0 2 2 1 1 2 1 1 2 1 0 2 0
 0 0 2 2 0 1 0 0 2 1 1 1 1 0 2 2 2 1 2 0 0 1 1 0 2 2 0 0 2 1 2 1 0 0 0 2 1
 1 0 2 2 1 0 1 0 0 2 1 1 1 1 0 1 2 1 1 0 0 2 2 1 2 1]

给出其预测边界:

mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o')
mglearn.discrete_scatter(
 kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], [0, 1, 2],
 markers='^', markeredgewidth=2)

在这里插入图片描述
👆由于设置簇的个数为3,因此最终分为3簇,簇中心使用🔺表示。

查看不同聚类中心个数对聚类结果的影响

分别设置聚类中心个数为2个和5个:

import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
# 使用2个簇中心:
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
assignments = kmeans.labels_
mglearn.discrete_scatte
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值