k均值聚类
k均值聚类是最简单也最常用的聚类算法,它试图找到代表数据特定区域的簇中心。每个簇中心设置为所分配的所有数据点的平均值,如果簇的分配不再变化,那么算法结束。
无监督学习:给出的标签不具有先验意义
在make_blobs数据集上使用k均值聚类算法,并输出用训练的无监督学习模型产生的预测结果:
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
X, y = make_blobs(random_state=1)
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
print(kmeans.predict(X))
👇这个结果给出的仅是簇标签,无先验含义。如,通过k均值聚类分类出的人物肖像,需要查看肖像才知道是你的哪位朋友。
[1 0 0 0 2 2 2 0 1 1 0 0 2 1 2 2 2 1 0 0 2 0 2 1 0 2 2 1 1 2 1 1 2 1 0 2 0
0 0 2 2 0 1 0 0 2 1 1 1 1 0 2 2 2 1 2 0 0 1 1 0 2 2 0 0 2 1 2 1 0 0 0 2 1
1 0 2 2 1 0 1 0 0 2 1 1 1 1 0 1 2 1 1 0 0 2 2 1 2 1]
给出其预测边界:
mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o')
mglearn.discrete_scatter(
kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], [0, 1, 2],
markers='^', markeredgewidth=2)
👆由于设置簇的个数为3,因此最终分为3簇,簇中心使用🔺表示。
查看不同聚类中心个数对聚类结果的影响
分别设置聚类中心个数为2个和5个:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
# 使用2个簇中心:
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
assignments = kmeans.labels_
mglearn.discrete_scatte