自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 ArcGIS Server https访问不安全解决方法

ArcGIS Server https访问不安全解决方法

2022-09-23 14:18:56 1269

转载 机器学习算法之K-means(K均值聚类)算法

聚类聚类,简单来说,就是将一个庞杂数据集中具有相似特征的数据自动归类到一起,称为一个簇,簇内的对象越相似,聚类的效果越好。它是一种无监督的学习(Unsupervised Learning)方法,不需要预先标注好的训练集。聚类与分类最大的区别就是分类的目标事先已知,例如猫狗识别,你在分类之前已经预先知道要将它分为猫、狗两个种类;而在你聚类之前,你对你的目标是未知的,同样以动物为例,对于一个动物集来...

2019-10-08 19:47:51 7477

转载 机器学习算法之回归算法

回归(Regression) 概述分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值。回归 场景回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。假如你想要预测兰博基尼跑车的功率大小,可能会这样计算:HorsePower = 0.0015 * annualSalary - 0.99 * hoursListeni...

2019-09-05 16:17:50 1705

转载 机器学习算法之集成方法

集成方法: ensemble method 概述概念:是对其他算法进行组合的一种形式。通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想。集成方法:投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法再学习(boo...

2019-08-29 17:05:27 652

转载 机器学习算法之支持向量机(SVM)

支持向量机 概述支持向量机(Support Vector Machines, SVM):是一种监督学习算法。支持向量(Support Vector)就是离分隔超平面最近的那些点。机(Machine)就是表示一种算法,而不是表示机器。支持向量机 场景要给左右两边的点进行分类明显发现:选择D会比B、C分隔的效果要好很多。支持向量机 原理SVM工作原理对于上述的苹果和香蕉,...

2019-08-27 21:38:57 1202 1

转载 机器学习算法之Logistic 回归算法

Logistic 回归 概述Logistic 回归 或者叫逻辑回归虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。一些概念Sigmoid 函数回归 概念假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。进而可以得到对这些点的拟合直线方程...

2019-08-27 16:43:41 429

转载 机器学习算法之NB(朴素贝叶斯)算法

朴素贝叶斯 概述

2019-08-27 11:50:34 1884

转载 机器学习算法之决策树算法

决策树 综述决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。决策树学习通常包括 3 个步骤:特征选择、决策树的生成和决策树的修剪。决策树 场景一个叫做 “二十个问题” 的游戏,游...

2019-08-26 11:37:32 3987

转载 机器学习算法之KNN算法

KNN概述一句话总结:近朱者赤近墨者黑!k 近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k 近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻算法不具有显式的学习过程。k 近邻算法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”...

2019-08-25 11:42:17 876

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除