秒懂C++之set、map的封装

fe594ea5bf754ddbb223a54d8fb1e7bc.gif

目录

 

红黑树的泛型编程

改变比较方式:仿函数

迭代器模拟实现

++运算符重载

begin/end

!=/==运算符重载

测试

const

Find

[ ] 运算符重载

全部代码

RBTree.h

Mymap.h

Myset.h

test.cpp


红黑树的泛型编程

既然我们要实现set,map的封装那肯定要用到我们前面所学的红黑树为底层~

不过set是k模型,map是kv模型,难道我们要专门写两份不同模型的红黑树供它们使用吗?

让我们来看看在源码中它们是如何解决这一问题的~

在set源码中底层红黑树也设置了两个参数~不过这两个参数其实都是Key没啥区别

而map源码中底层红黑树第一个参数为key,第二个参数为pair,这就有点奇怪了,红黑树设置kv模型第一个参数为pair就行了,为什么这里有两个参数?

这其实是一种泛型编程的写法,目的就是减少重复冗余代码。 首先红黑树第一个参数统一为key,第二个参数是根据set与map传递的参数而变化~

如果set使用红黑树,那红黑树就是<k,k>模型,value值就是key~

如果是map使用红黑树,那么红黑树就是<k,pair<k,v>>模型,value值就是pair<k,v>~

enum Colour
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	T _data;
	Colour _col;

	RBTreeNode(const T& data)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
		, _col(RED)
	{}
};

// set<k>->RBTree<K, K>
// map<k,pair<k,v>>->RBTree<K, pair<K, V>>
template<class K, class T>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	

private:
	Node* _root = nullptr;
};
#pragma once
//Myset.h
#include"RBTree.h"


namespace lj
{
	template<class K>
	class set
	{

	private:
		RBTree<K, K> _t;
	};
}
#pragma once
//Mymap.h
#include"RBTree.h"


namespace lj
{
	template<class K,class V>
	class map
	{

	 private:
		RBTree<K,  pair<k,v>> _t;
	};
}

改变比较方式:仿函数

 以下是源代码中pair的比较方式~但我们不想实现value的比较,我们只想实现key的比较~

其实我们也不用特意去修改运算符>,<,我们修改获取_data数据的方式就行了~

pair小于如果是比较key与value的话,那么我们在获取data的时候只让它拿到key就好了~

定义一个内部类,作用为set参数的data只能获取key,map参数的data只能获取key~

迭代器模拟实现

++运算符重载

当右子树为空时,it++有指向其父节点的,也有指向其爷爷节点的,只能说最终会指向其祖先节点的某一个~那我们要如何表示这个呢?

当右子树为空作为条件时,我们先看向节点15,作为其父节点的左子树访问完后就应该访问父节点了~应该二叉搜索树为中序遍历——左子树,根,右子树

我们再来看向节点6,作为其父节点1的右子树,当把节点6访问完也就意味着包括节点1在内的其所有子树都访问完了,即节点8的左子树访问完了,下一步就该访问节点8~

所以当其右子树为空时,我们就去找哪个祖先节点的孩子节点为左节点,就比如节点15,它是祖先节点的左节点吗?——是的,那么我们的下一个节点就是其父亲。

再看节点6,它是目前父节点的左孩子吗?——不是,那么继续向上遍历,节点1是其父节点8的左孩子吗?——是的,那么我们的下一个节点就是节点1的父亲~

template<class T>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	T& operator*()
	{
		return _node->_data;
	}

	T* operator->()
	{
		return &_node->_data;
	}

	Self& operator++()
	{
		//如果其右子树不为空
		if (_node->_right)
		{
			// 右子树的最左节点
			Node* subLeft = _node->_right;
			while (subLeft->_left)
			{
				subLeft = subLeft->_left;
			}

			_node = subLeft;
		}
		else
		{
			// 一直找该节点恰好是父亲左节点的关系
			Node* cur = _node;
			Node* parent = cur->_parent;
			//只要孩子还是父亲右节点的关系,就一直循环继续找
			//特殊判断,当最后一个节点++时应该指向空
			while (parent&&cur == parent->_right)
			{
				//向上寻找
				cur = parent;
				parent = cur->_parent;
			}
			//找到了,把父亲节点作为下一个节点
			_node = parent;
		}

		return *this;
	}
};

关于封装迭代器(使得指针++自定义)不熟悉的友友可以去看这篇文章:秒懂C++之List-CSDN博客

begin/end

iterator begin()
	{
		// 求最左节点
		Node* subLeft = _root;
		//若为空树则返回空节点
		while (subLeft&&subLeft->_left)
		{
			subLeft = subLeft->_left;
		}

		return iterator(subLeft);
	}

	iterator end()
	{
		return iterator(nullptr);
	}

!=/==运算符重载

	bool operator!=(const Self& s)
	{
		return _node != s._node;
	}

	bool operator==(const Self& s)
	{
		return _node == s._node;
	}

测试

当我们部署好迭代器后,开始来检验一下成果~

const

对const迭代器不了解的友友可以参考这篇文章:秒懂C++之List-CSDN博客

前我们还面临一个问题,key是不支持修改的~而我们现在只能通过降低传参权限去限制~

其实我们也可以封装一个const类型的迭代器~

不过const迭代器了解即可,毕竟正常迭代器就够用了~

ps:map一般不需要const迭代器,因为它需要修改pair里面的value,而set只有key,所以不能被修改~

Find

iterator Find(const K& key)
	{
		whok kot;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < key)
			{
				cur = cur->_right;
			}
			else if (kot(cur->_data) > key)
			{
				cur = cur->_left;
			}
			else
			{
				return iterator(cur);
			}
		}

		return end();

	}

这就是为什么我们红黑树第一个参数统一设置成key的意义,我们用Find函数单纯就是寻找key,如果用第二个参数的话从data里面还得挑出key反而麻烦~

当然啦,如果你就是想在第二个参数的data找也可以~ 

不影响~

[ ] 运算符重载

    pair<iterator, bool> insert(const pair<K, V>& kv)
	 {
		return _t.Insert(kv);
	 }

		

    V& operator[](const K& key)
	 {
	 	pair<iterator, bool> ret = insert(make_pair(key, V()));
		return ret.first->second;
	 }

要实现[ ] 运算符重载就必须得对insert的返回值进行修改~

全部代码

RBTree.h

//RBTree.h
#pragma once
#include<vector>
enum Colour
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	T _data;
	Colour _col;

	RBTreeNode(const T& data)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
		, _col(RED)
	{}
};

template<class T, class Ptr, class Ref>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ptr,Ref> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	Self& operator++()
	{
		//如果其右子树不为空
		if (_node->_right)
		{
			// 右子树的最左节点
			Node* subLeft = _node->_right;
			while (subLeft->_left)
			{
				subLeft = subLeft->_left;
			}

			_node = subLeft;
		}
		else
		{
			// 一直找该节点恰好是父亲左节点的关系
			Node* cur = _node;
			Node* parent = cur->_parent;
			//只要孩子还是父亲右节点的关系,就一直循环继续找
			//特殊判断,当最后一个节点++时应该指向空
			while (parent&&cur == parent->_right)
			{
				//向上寻找
				cur = parent;
				parent = cur->_parent;
			}
			//找到了,把父亲节点作为下一个节点
			_node = parent;
		}

		return *this;
	}
	bool operator!=(const Self& s)
	{
		return _node != s._node;
	}

	bool operator==(const Self& s)
	{
		return _node == s._node;
	}
};


// set->RBTree<K, K>
// map->RBTree<K, pair<K, V>>
template<class K, class T, class whok>
class RBTree
{
	typedef RBTreeNode<T> Node;
	public:
	
	typedef RBTreeIterator<T, T*, T&> iterator;
	typedef RBTreeIterator<T, const T*, const T&> const_iterator;

	const_iterator begin() const
	{
		// 求最左节点
		Node* subLeft = _root;
		//若为空树则返回空节点
		while (subLeft && subLeft->_left)
		{
			subLeft = subLeft->_left;
		}

		return const_iterator(subLeft);
	}

	iterator begin()
	{
		// 求最左节点
		Node* subLeft = _root;
		//若为空树则返回空节点
		while (subLeft&&subLeft->_left)
		{
			subLeft = subLeft->_left;
		}

		return iterator(subLeft);
	}

	const_iterator end() const
	{
		return const_iterator(nullptr);
	}

	iterator end()
	{
		return iterator(nullptr);
	}

	iterator Find(const T& data)
	{
		whok kot;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				cur = cur->_left;
			}
			else
			{
				return iterator(cur);
			}
		}

		return end();

	}


	pair<iterator, bool>  Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			//根节点为黑色
			_root->_col = BLACK;
			//return true;
			return make_pair(iterator(_root), true);
		}
		whok kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				//return false;
				return make_pair(iterator(cur), false);
			}
		}
		// 准备插入,节点为红色
		cur = new Node(data);
		//标记最开始准备插入的cur,避免cur在向上遍历时变色移动,这时候的迭代器虽然还是叫cur,但已经不是原来的节点了
		Node* newnode = cur;

		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;
		//若插入成功后其父节点为黑,那么并不会触发连续红色,不需要修改
		//若插入成功后其父节点为红,触发连续红色,需要修改
		while (parent && parent->_col == RED)
		{
			//记录g节点
			Node* grandfather = parent->_parent;
			//记录u节点
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				//开始分类情况
				//情况一:u节点存在且为红
				if (uncle && uncle->_col == RED)
				{
					//p/g/u变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					//把g当作cur继续处理
					cur = grandfather;
					parent = cur->_parent;
				}
				//情况二:u节点不存在或u节点存在且为黑
				else
				{
					//情况二需要按照旋转情况进行分类
					//右旋情况,以g为旋转点
					if (cur == parent->_left)
					{
						//       g
						//    p     u
						// c 

						//右旋
						RotateR(grandfather);
						//p/g节点变色
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					//左右旋,p为旋转点后以g为旋转点
					else if (cur == parent->_right)
					{
						//       g
						//    p     u
						//		 c 

						//左旋
						RotateL(parent);
						//右旋
						RotateR(grandfather);
						//cur/g节点变色
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					//旋转处理完毕,不用再向上处理,直接退出
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				//开始分类情况
				//情况一:u节点存在且为红
				if (uncle && uncle->_col == RED)
				{
					//p/g/u变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					//把g当作cur继续处理
					cur = grandfather;
					parent = cur->_parent;
				}
				//情况二:u节点不存在或u节点存在且为黑
				else
				{
					//情况二需要按照旋转情况进行分类
					//左旋情况,以g为旋转点
					if (cur == parent->_right)
					{
						//       g
						//    u     p
						//			   c

						//左旋
						RotateL(grandfather);
						//p/g节点变色
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					//右左旋,p为旋转点后以g为旋转点
					else if (cur == parent->_left)
					{
						//       g
						//    u     p
						//		 c 

						//右旋
						RotateR(parent);
						//左旋
						RotateL(grandfather);
						//cur/g节点变色
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					//旋转处理完毕,不用再向上处理,直接退出
					break;
				}
			

			}
					
		}
		//插入调整结束后我们统一让根节点变为黑色
		_root->_col = BLACK;
		//插入成功~
		//return true;
		//把最开始指向插入节点的迭代器返回
		return make_pair(iterator(newnode), true);
	}

	void RotateL(Node* parent)
	{
		//先完成左单旋基本规则
		//移动三个主要节点
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		subR->_left = parent;

		//再更新_parent
		if (subRL)
		{
			//为空就不用给了
			subRL->_parent = parent;
		}
		Node* ppnode = parent->_parent;
		parent->_parent = subR;
		//若subR左旋后成为根节点
		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		//若subR左旋后不会成为根节点
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subR;
			}
			else
			{
				ppnode->_right = subR;
			}
			subR->_parent = ppnode;
		}
	}

	void RotateR(Node* parent)
	{
		//先完成右单旋基本规则
		//移动三个主要节点
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		subL->_right = parent;

		//再更新_parent
		if (subLR)
		{
			//为空就不用给了
			subLR->_parent = parent;
		}
		Node* ppnode = parent->_parent;
		parent->_parent = subL;
		//若subL右旋后成为根节点
		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		//若subL右旋后不会成为根节点
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subL;
			}
			else
			{
				ppnode->_right = subL;
			}
			subL->_parent = ppnode;
		}
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << endl;
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_root);
	}

	bool Check(Node* cur,int RedBlackNum,int BlackNum)
	{
		
		if (cur == nullptr)
		{
			if (RedBlackNum != BlackNum)
			{
				cout << "黑色节点不足" << endl;
				return false;
			}
			cout << BlackNum << endl;
			return true;
		}
			
		//检查是否存在连续的红色节点
		if (cur->_col == RED && cur->_parent->_col == RED)
		{
			cout << cur->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}
		if (cur->_col == BLACK)
		{
			BlackNum++;
		}

		return Check(cur->_left,RedBlackNum, BlackNum)
			&& Check(cur->_right, RedBlackNum, BlackNum);
	}

	bool IsBalance()
	{	
		//检查根节点是否为黑色
		if (_root && _root->_col == RED)
			return false;
		//检查路径黑节点
		int RedBlackNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				RedBlackNum++;
			}
			cur = cur->_left;
		}
		return Check(_root, RedBlackNum, 0);
	}

	private:
	Node* _root = nullptr;
};






Mymap.h

#pragma once
//Mymap.h
#include"RBTree.h"


namespace lj
{
	template<class K,class V>
	class map
	{
		struct mapk
		{
			const K& operator()(const pair<K, V>& kv)
			{
				//封装一个只获取pair中key值的内部类
				return kv.first;
			}
		};
	public:
		typedef typename RBTree< K, pair<const K, V>, mapk>::iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, mapk>::const_iterator const_iterator;

		const_iterator begin() const
		{
			return _t.begin();
		}

		const_iterator end() const
		{
			return _t.end();
		}
		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

		/*bool insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}*/
		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}
	 private:
		//使用底层红黑树封装时:
		RBTree<K,  pair<const K,V>, mapk> _t;
	};
	void maptest1()
	{
		map<int, int> m;
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		for (auto e : a)
		{
			m.insert(make_pair(e, e));
		}
		map<int, int>::iterator it = m.begin();
		while (it != m.end())
		{
			cout << it->first << " "<< it->second<<endl;
			++it;
		}
		cout << endl;
	}
	void maptest2()
	{
		set< int> s;
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		for (auto e : a)
		{
			s.insert(e);
		}
		set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			//*it += 100;
			if (it == s.find(1))
			{
				cout << "找到了" << endl;
				cout << *it << endl;
				break;
			}
			else
			{
				cout << "找不到" << endl;
				break;
			}
			//cout << *it << endl;
			++it;
		}
		cout << endl;
	}
	void maptest3()
	{
		string arr[] = { "哈哈", "嘻嘻", "嘿嘿", "呃呃", "呃呃", "嘻嘻","嘿嘿", "嘿嘿", "哈哈", "嘿嘿", "呃呃", "哈哈" };
		map<string, int> countMap;
		for (auto& e : arr)
		{
			/*if (e == "ݮ")
			{
				int i = 0;
			}*/

			countMap[e]++;
		}

		for (auto& kv : countMap)
		{
			cout << kv.first << ":" << kv.second << endl;
		}
		cout << endl;
	}
}

Myset.h

#pragma once
//Myset.h
#include"RBTree.h"


namespace lj
{
	template<class K>
	class set
	{
		struct setk
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K,const K, setk>::iterator iterator;
		typedef typename RBTree<K, const K, setk>::const_iterator const_iterator;
		iterator begin()
		{
			return _t.begin();
		}

		const_iterator begin() const
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		const_iterator end() const
		{
			return _t.end();
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

		/*bool insert(const K& key)
		{
			return _t.Insert(key);
		}*/
		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}
		
	private:
		//使用底层红黑树封装时:
		RBTree<K, const K, setk> _t;
	};
	void settest1()
	{
		set< int> s;
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		for (auto e : a)
		{
			s.insert(e);
		}
		set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			//*it += 100;
			if (it == s.find(11))
			{
				cout << "找到了"<<endl;
				cout << *it << endl;
				break;
			}
			else
			{
				cout << "找不到" << endl;
				break;
			}
			//cout << *it << endl;
			++it;
		}
		cout << endl;
	}
}

test.cpp

//test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
#include <map>
#include <set>

#include "MySet.h"
#include "Mymap.h "


int main()
{
	//lj::maptest1();
	//lj::maptest2();
	lj::maptest3();

	//lj::settest1();


	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值