题目描述
有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 k 个学生的能力值的乘积最大,你能返回最大的乘积吗?
输入描述:
每个输入包含 1 个测试用例。每个测试数据的第一行包含一个整数 n (1 <= n <= 50),表示学生的个数,接下来的一行,包含 n 个整数,按顺序表示每个学生的能力值 ai(-50 <= ai <= 50)。接下来的一行包含两个整数,k 和 d (1 <= k <= 10, 1 <= d <= 50)。
输出描述:
输出一行表示最大的乘积。
示例1
输入
复制
3 7 4 7 2 50
输出
复制
49
思路:
首先了解清楚题意,给出一段序列,选出k个人,使他们的乘积最大,并每相邻的2个人的距离小于等于d,咋一看,好像是一道贪心,实则不然,因为它有距离限制,所以只能枚举了,而dp又称为特殊的枚举,我们先想好状态推导公式,通常要么顺着推,要么倒着推,这里我们设第i个人他为第j个被选中的最优解,那么我们就能够得出公式dp[i][j]=max(dp[left][j-1]*arr[i]),这里的left指的是上一个选定j-1的位置的集合,然后弄好边界。
code:
#include<stdio.h>
#include<iostream>
#include<vector>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
LL n,k,d,arr[100],dpmax[100][100],dpmin[100][100];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
cin>>arr[i];
cin>>k>>d;
for(int i=1;i<=n;i++)
{
dpmax[i][1]=arr[i];
dpmin[i][1]=arr[i];
}
for(LL i=2;i<=k;i++)
for(LL j=1;j<=n;j++)
{
LL tempmax=-1e18,tempmin=1e18;
for(LL left=max(i-1,j-d);left<=j-1;left++)
{
tempmax=max(tempmax,dpmax[left][i-1]*arr[j]);
tempmax=max(tempmax,dpmin[left][i-1]*arr[j]);
tempmin=min(tempmin,dpmin[left][i-1]*arr[j]);
tempmin=min(tempmin,dpmax[left][i-1]*arr[j]);
}
dpmax[j][i]=tempmax;
dpmin[j][i]=tempmin;
}
LL ans=-1e18;
for(int i=k;i<=n;i++)
ans=max(ans,dpmax[i][k]);
cout<<ans<<endl;
return 0;
}