省选专练 【BZOJ4773】负环

可耻的苟到数据后搞了一波题

首先标解绝对不是倍增floyd

这是n^3logn的算法

二分+DFS_SPFA是nlogn的算法

但是在学习嘛

所谓标解:

#include<bits/stdc++.h>
using namespace std;
const int N=310;
int n,m;
struct Matrix{
	int a[N][N];
	friend Matrix operator * (Matrix A,Matrix B){
		Matrix C;
		memset(C.a,0x3f,sizeof(C.a));
		for(int k=1;k<=n;k++){
			for(int i=1;i<=n;i++){
				for(int j=1;j<=n;j++){
					C.a[i][j]=min(C.a[i][j],A.a[i][k]+B.a[k][j]);
				}
			}
		}
		return C;
	}
}a[N],x;
int main(){
//	cout<<"218"<<'\n';
	scanf("%d%d",&n,&m);
//	cout<<"8791897"<<'\n';
	memset(x.a,0x3f,sizeof(x.a));
	memset(a[0].a,0x3f,sizeof(a[0].a));
	for(int i=1;i<=m;i++){
		int u,v,w;
		scanf("%d%d%d",&u,&v,&w);
		a[0].a[u][v]=w;	
	}
	for(int i=1;i<=n;i++){
		a[0].a[i][i]=x.a[i][i]=0;
	}
	int len=0;
	while((1<<len)<=n)len++;
	len--;
	for(int i=1;i<=len;i++){
		a[i]=a[i-1]*a[i-1];
	}
	Matrix tmp;
	int ans=0;
	for(int j=len;j>=0;j--){
		tmp=x*a[j];
		int flag=1;
		for(int i=1;i<=n;i++){
			if(tmp.a[i][i]<0){
				flag=0;
				break;	
			}		
		}
		if(flag==1)
			x=tmp,ans+=(1<<j);
	}
	if(ans>n)cout<<0;
	cout<<ans+1;
} 

比标解快几倍的解法:

#include<iostream>  
#include<algorithm>  
#include<cstdio>  
#include<cstring>  
#include<cstdlib>  
#include<cmath>  
using namespace std;
   
const int ONE = 305;
const int EDG = ONE*ONE; 
     
int n,m;
int x,y,z;
int nxt[EDG],first[EDG],go[EDG],w[EDG],tot;
int vis[ONE],dist[ONE];
int PD;
     
int get()
{
        int res=1,Q=1;    char c;
        while( (c=getchar())<48 || c>57)
        if(c=='-')Q=-1;
        if(Q) res=c-48; 
        while((c=getchar())>=48 && c<=57) 
        res=res*10+c-48; 
        return res*Q; 
}
      
void Add(int u,int v,int z)
{
        nxt[++tot]=first[u];    first[u]=tot;    go[tot]=v;    w[tot]=z;
}
     
void Spfa(int u,int T,int Limit)
{
        if(PD) return;
        for(int e=first[u];e;e=nxt[e])
        {
            int v = go[e];
            if(dist[u]+w[e] <= dist[v])
            {
                if(vis[v]) {PD = 1; return;}
                if(T==Limit) return;
                dist[v] = dist[u] + w[e];
                vis[v] = 1;
                Spfa(v,T+1,Limit);
                vis[v] = 0;
            }
        }
}
     
int Check(int Limit)
{
        PD = 0;
        for(int i=1;i<=n;i++)
        {
            memset(vis,0,sizeof(vis));  vis[i] = 1;
            memset(dist,0,sizeof(dist));
            Spfa(i,1,Limit);
            if(PD) return 1;
        }
        return 0;
}
     
int main()
{
        n=get();    m=get();
        for(int i=1;i<=m;i++)
        {
            x=get();    y=get();    z=get();
            Add(x,y,z);
        }
             
        if(!Check(n)) {printf("0"); exit(0);}
             
        int l=1, r=n;
        while(l < r-1)
        {
            int mid = l+r>>1;
            if(Check(mid)) r = mid;
            else l = mid;
        }
          
        if(Check(l)) printf("%d",l);
        else printf("%d",r);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值