Description
在忘记考虑负环之后,黎瑟的算法又出错了。对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得
环上的边权和为负数。保证图中不包含重边和自环。
Input
第1两个整数n, m,表示图的点数和边数。
接下来的m行,每<=三个整数ui, vi, wi,表<=有一条从ui到vi,权值为wi的有向边。
2 <= n <= 300
0 <= m <= n(n <= 1)
1 <= ui, vi <= n
|wi| <= 10^4
Output
仅一行一个整数,表示点数最小的环上的点数,若图中不存在负环输出0。
Sample Input
3 6
1 2 -2
2 1 1
2 3 -10
3 2 10
3 1 -10
1 3 10
Sample Output
2
HINT
Source
这题目一开始感觉眼熟的很,,cf中有一道smile house跟着题基本一模一样,,而且是个完全图,用倍增floyd一下就好了,结果看见这题m和n同一个级别的,,那这不是直接乱搞都能过。。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=1e6;
int head[N],go[N],val[N],next[N];
int n,m;
const int M=5e2+5;
int f[M][M],g[M][M];
typedef long long ll;
ll ans;
int tot;
inline void add(int x,int y,int z)
{
go[++tot]=y;
val[tot]=z;
next[tot]=head[x];
head[x]=tot;
}
int main()
{
scanf("%d%d",&n,&m);
fo(i,1,m)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
//add(y,x,z);
}
memset(f,0x3f,sizeof(f));
fo(i,1,n)f[i][i]=0;
fo(i,1,n)
{
memcpy(g,f,sizeof(g));
fo(z,1,n)
{
fo(x,1,n)
{
int j=head[x];
while (j)
{
int v=go[j];
g[z][v]=min(g[z][v],f[z][x]+val[j]);
j=next[j];
}
}
}
memcpy(f,g,sizeof(f));
fo(x,1,n)
{
if (f[x][x]<0)
{
printf("%d\n",i);
return 0;
}
}
}
printf("0\n");
return 0;
}

1480

被折叠的 条评论
为什么被折叠?



