bzoj4773负环

Description

在忘记考虑负环之后,黎瑟的算法又出错了。对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得
环上的边权和为负数。保证图中不包含重边和自环。
Input

第1两个整数n, m,表示图的点数和边数。
接下来的m行,每<=三个整数ui, vi, wi,表<=有一条从ui到vi,权值为wi的有向边。
2 <= n <= 300
0 <= m <= n(n <= 1)
1 <= ui, vi <= n
|wi| <= 10^4
Output

仅一行一个整数,表示点数最小的环上的点数,若图中不存在负环输出0。
Sample Input

3 6

1 2 -2

2 1 1

2 3 -10

3 2 10

3 1 -10

1 3 10

Sample Output

2
HINT

Source
这题目一开始感觉眼熟的很,,cf中有一道smile house跟着题基本一模一样,,而且是个完全图,用倍增floyd一下就好了,结果看见这题m和n同一个级别的,,那这不是直接乱搞都能过。。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=1e6;
int head[N],go[N],val[N],next[N];
int n,m;
const int M=5e2+5;
int f[M][M],g[M][M];
typedef long long ll;
ll ans;
int tot;
inline void add(int x,int y,int z)
{
    go[++tot]=y;
    val[tot]=z;
    next[tot]=head[x];
    head[x]=tot;
}
int main()
{
    scanf("%d%d",&n,&m);
    fo(i,1,m)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        //add(y,x,z);
    }
    memset(f,0x3f,sizeof(f));
    fo(i,1,n)f[i][i]=0;
    fo(i,1,n)
    {
        memcpy(g,f,sizeof(g));
        fo(z,1,n)
        {
            fo(x,1,n)
            {
                int j=head[x];
                while (j)
                {
                    int v=go[j];
                    g[z][v]=min(g[z][v],f[z][x]+val[j]);
                    j=next[j];
                }
            }
        }
        memcpy(f,g,sizeof(f));
        fo(x,1,n)
        {
            if (f[x][x]<0)
            {
                printf("%d\n",i);
                return 0;
            }
        }
    }
    printf("0\n");
    return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值