JZOJ5958阶乘

有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值。

 

额简单的数学(我是真的爱数学)

二分答案很明显合法

怎么判断:对每个质数做向下取整除法:

\sum_{p|Prime}\sum_{i}\left \lfloor \frac{x}{p^{i}} \right \rfloor

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define LL long long
inline void read(int &x){
	x=0;
	char ch=getchar();
	int f=1;
	while(ch<'0'||ch>'9'){
		if(ch=='-')f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9'){
		x=x*10+ch-'0';
		ch=getchar();
	}
	x*=f;
}
const int N=1e5+1e4;
const int maxn=1e5+10;
int Prime[N];
int vis[N];
int cnt=0;
void Pre(){
	for(int i=2;i<=maxn;++i){
		if(!vis[i]){
			Prime[++cnt]=i;	
		}
		for(int j=1;j<=cnt&&Prime[j]*i<=maxn;++j){
			vis[i*Prime[j]]=1;
			if(i%Prime[j]==0)break;
		}
	}
}
int C[N];
int val[N];
void Solve(LL x){
	for(LL i=2;i*i<=x;++i){
		while(x%i==0){
			++C[i];
			x/=i;
		}
	}
	if(x>1)++C[x];
}
int now=0;
LL Goal=-1;
bool Check(LL x){
	for(LL i=1;i<=maxn;++i){
		if(C[i]){
			LL now=i;
			LL sum=0;
			while(x/now){
				sum+=x/now;
				now=now*i;
			}
			if(sum<C[i])return false;
		}
	}
	return true;
}
int n;
int main(){
	freopen("fact.in","r",stdin);
	freopen("fact.out","w",stdout);
//	Pre();
	read(n);
	for(int i=1;i<=n;++i){
		read(val[i]);
	}
	for(int i=1;i<=n;++i){
		Solve(val[i]);
	}
	LL m=1;
	for(int i=1;i<=maxn;++i)if(C[i])++now;//cout<<i<<" ";
	LL l=1;
	LL r=1e12;
	LL ans=0;
	while(l<=r){
		LL mid=(l+r)>>1;
		if(Check(mid)){
			ans=mid;
			r=mid-1;
		}
		else l=mid+1;
	}
	cout<<ans;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值