阶乘[分解质因数][二分答案]

描述

有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值。

输入

共两行。

第一行一个正整数n。

第二行n个正整数a[i]。

输出

共一行

一个正整数m。

样例输入

1
6

样例输出

3

提示

样例解释:

当p=6,q=1时,p*q=3!

【数据范围与约定】

对于10%的数据,n<=10

对于30%的数据,n<=1000

对于100%的数据,n<=100000,a[i]<=100000


先看一个简单的问题:
27!里面有多少个 3 相乘?
27!=1*2*...*27
包含 1 个 3 的数有 27/(3^1)=9 个
包含 2 个 3 的数有 27/(3^2)=3 个
包含 3 个 3 的数有 27/(3^3)=1 个
总共:9+3+1=13 个
所以 27!里面有 13 个 3 相乘。
用这个方法就可以求得 m!有多少个 ai 相乘,二分判断即可


#include<bits/stdc++.h>
#define N 100005
#define Mod 1000003
#define LL long long 
using namespace std;
int read(){
	int cnt=0;char ch=0;
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))cnt=cnt*10+(ch-'0'),ch=getchar();
	return cnt; 
} 
int n,vis[N],Max; 
bool check(int m){
	if(m<Max) return false;
	for(int i=2;i<=Max;i++){
 		if(!vis[i]) continue;
 		int x=m,tmp=0;
 		while(x){
 			tmp+=x/i;x/=i;
 		}
 		if(tmp<vis[i]) return false;
 	}return true;
}
int main(){
	n=read();
	for(int i=1;i<=n;i++){
		int a=read();
		int flag=0;
		for(int j=2;j*j<=a;j++)
			while(a%j==0)
				vis[j]++,a/=j,Max=max(Max,j);
		if(a)vis[a]++,Max=max(Max,a);
	}
	int l=1,r=1e9;
	while(l<r){
		int mid=(l+r)>>1;
		if(check(mid)) r=mid;
		else l=mid+1;
	}printf("%d",l);
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值