tarjan算法学习

7 篇文章 0 订阅
5 篇文章 0 订阅

“tarjan陪伴强联通分量

生成树完成后思路才闪光

欧拉跑过的七桥古塘

让你 心驰神往”----《膜你抄》

一、tarjan求强连通分量

1、什么是强连通分量?

“有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。”

一脸懵逼......不过倒也不难理解。反正就是在图中找到一个最大的图,使这个图中每个两点都能够互相到达。这个最大的图称为强连通分量,同时一个点也属于强连通分量。

如图中强连通分量有三个:1-2-3,4,5

2、强连通分量怎么找?

噫......当然,通过肉眼可以很直观地看出1-2-3是一组强连通分量,但很遗憾,机器并没有眼睛,所以该怎么判断强连通分量呢?

如果仍是上面那张图,我们对它进行dfs遍历。

可以注意到红边非常特别,因为如果按照遍历时间来分类的话,其他边都指向在自己之后被遍历到的点,而红边指向的则是比自己先被遍历到的点。

如果存在这么一条边,那么我们可以yy一下,emmmm.......

从一个点出发,一直向下遍历,然后忽得找到一个点,那个点竟然有条指回这一个点的边!

那么想必这个点能够从自身出发再回到自身,想必这个点和其他向下遍历的该路径上的所有点构成了一个环,想必这个环上的所有点都是强联通的。

但只是强联通啊,我们需要求的可是强连通分量啊...... 那怎么办呢?

我们还是yy出那棵dfs树,不妨想一下,什么时候一个点和他的所有子孙节点中的一部分构成强连通分量

他的子孙再也没有指向他的祖先的边,却有指向他自己的边;因为只要他的子孙节点有指向祖先的边,显然可以构成一个更大的强联通图

 

比如说图中红色为强连通分量,而蓝色只是强联通图

那么我们只需要知道这个点u下面的所有子节点有没有连着这个点的祖先就行了。

但似乎还有一个问题啊......

我们怎么知道这个点u它下面的所有子节点一定是都与他强联通的呢?

这似乎是不对的,这个点u之下的所有点不一定都强联通

那么怎么在退回到这个点的时候,知道所有和这个点u构成强连通分量的点呢?

开个记录就行了什么?!这么简单?没错~就是这么简单~

如果在这个点之后被遍历到的点已经能与其下面的一部分点(也可能就只有他一个点)已经构成强连通分量,即它已经是最大的那么把它们一起从栈里弹出来就行了。

所以最后处理到点u时如果u的子孙没有指向其祖先的边,那么它之后的点肯定都已经处理好了,一个常见的思想,可以理解一下。所以就可以保证栈里留下来u后的点都是能与它构成强连通分量的。


似乎做法已经明了了,用程序应该怎么实现呢?

所以为了实现上面的操作,我们需要一些辅助数组

(1)、dfn[ ],表示这个点在dfs时是第几个被搜到的。

(2)、low[ ],表示这个点以及其子孙节点连的所有点中dfn最小的值

(3)、stack[ ],表示当前所有可能能构成是强连通分量的点。

(4)、vis[ ],表示一个点是否在stack[ ]数组中。

那么按照之上的思路,我们来考虑这几个数组的用处以及tarjan的过程。

 

假设现在开始遍历点u:

(1)、首先初始化dfn[u]=low[u]=第几个被dfs到

dfn可以理解,但为什么low也要这么做呢?

 因为low的定义如上,也就是说如果没有子孙与u的祖先相连的话,dfn[u]一定是它和它的所有子孙中dfn最小的(因为它的所有子孙一定比他后搜到)

(2)、将u存入stack[ ]中,并将vis[u]设为true

stack[ ]有什么用?如果u在stack中,u之后的所有点在u被回溯到时u和栈中所有在它之后的点都构成强连通分量。

(3)、遍历u的每一个能到的点,

如果这个点dfn[ ]为0,即仍未访问过,那么就对点v进行dfs,然后low[u]=min{low[u],low[v]}

low[ ]有什么用?应该能看出来吧,就是记录一个点它最大能连通到哪个祖先节点(当然包括自己)

如果遍历到的这个点已经被遍历到了,那么看它当前有没有在stack[ ]里,如果有那么low[u]=min{low[u],low[v]}

如果已经被弹掉了,说明无论如何这个点也不能与u构成强连通分量,因为它不能到达u

如果还在栈里,说明这个点肯定能到达u,同样u能到达他,他俩强联通

(4)、假设我们已经dfs完了u的所有的子树那么之后无论我们再怎么dfs,u点的low值已经不会再变了。

那么如果dfn[u]=low[u]这说明了什么呢?

再结合一下dfn和low的定义来看看吧:dfn表示u点被dfs到的时间,low表示u和u所有的子树所能到达的点中dfn最小的。

这说明了u点及u点之下的所有子节点没有边是指向u的祖先的了,即我们之前说的u点与它的子孙节点构成了一个最大的强连通图即强连通分量

此时我们得到了一个强连通分量,把所有的u点以后压入栈中的点和u点一并弹出,将它们的vis[ ]置为false,如有需要也可以给它们打上相同标记(同一个数字)

结合上面四步代码已经可以写出了:

对了,tarjan一遍不能搜完所有的点,因为存在孤立点或者其他

所以我们要对一趟跑下来还没有被访问到的点继续跑tarjan

怎么知道这个点有没有被访问呢?看看它的dfn是否为0

这看起来似乎是o(n^2)的复杂度,但其实均摊下来每个点只会被遍历一遍

所以tarjan的复杂度为o(n)

二、tarjan缩点

其实这也是利用了tarjan求强连通分量的方法,对于一些贡献具有传导性,比如友情啊、路径上的权值啊等等。

思想就是因为强连通分量中的每两个点都是强连通的,可以将一个强连通分量当做一个超级点,而点权按题意来定。

来看一道题吧。poj2186 Popular Cows

告诉你有n头牛,m个崇拜关系,并且崇拜具有传递性,如果a崇拜b,b崇拜c,则a崇拜c,求最后有几头牛被所有牛崇拜。

显然一个强联通分量内的所有点都是满足条件的,我们可以对整张图进行缩点,然后就简单了。

剩下的所有点都不是强连通的,现在整张图就是一个DAG(有向无环图)

那么就变成一道水题了,因为这是一个有向无环图,不存在所有点的出度都不为零的情况。

所以必然有1个及以上的点出度为零,如果有两个点出度为零,那么这两个点肯定是不相连的,即这两圈牛不是互相崇拜的,于是此时答案为零,如果有1个点出度为0,那么这个点就是被全体牛崇拜的,

这个点可能是一个强联通分量缩成的超级点,所以应该输出整个强联通分量中点的个数。

#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

int dfn[10010],low[10010],vis[10010],stack[10010],color[10010],du[10010],cnt[10010];
int n,m,top,sum,deep,tmp,ans;
vector<int> g[10010];

void tarjan(int u)
{
    dfn[u]=low[u]=++deep;
    vis[u]=1;
    stack[++top]=u;
    int sz=g[u].size();
    for(int i=0; i<sz; i++)
    {
        int v=g[u][i];
        if(!dfn[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else
        {
            if(vis[v])
            {
                low[u]=min(low[u],low[v]);
            }
        }
    }
    if(dfn[u]==low[u])
    {
        color[u]=++sum;
        vis[u]=0;
        while(stack[top]!=u)
        {
            color[stack[top]]=sum;
            vis[color[top--]]=0;
        }
        top--;
    }
}


int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(vis,0,sizeof(du));
        memset(vis,0,sizeof(low));
        memset(dfn,0,sizeof(dfn));
        memset(vis,0,sizeof(vis));
        memset(vis,0,sizeof(cnt));
        memset(vis,0,sizeof(color));
        memset(vis,0,sizeof(stack));
        for(int i=1; i<=n; i++)
        {
            g[i].clear();
        }
        for(int i=1; i<=m; i++)
        {
            int from,to;
            scanf("%d%d",&from,&to);
            g[from].push_back(to);
        }
        for(int i=1; i<=n; i++)
        {
            if(!dfn[i])
            {
                tarjan(i);
            }
        }
        for(int i=1; i<=n; i++)
        {
            int sz=g[i].size();
            for(int j=0; j<sz; j++)
            {
                int v=g[i][j];
                if(color[v]!=color[i])
                {
                    du[color[i]]++;
                }
            }
            cnt[color[i]]++;
        }
        for(int i=1; i<=sum; i++)
        {
            if(du[i]==0)
            {
                tmp++;
                ans=cnt[i];
            }
        }
        if(tmp==0)
        {
            printf("0\n");

        }
        else
        {
            if(tmp>1)
            {
                printf("0\n");
            }
            else
            {
                printf("%d\n",ans);
            }
        }
    }
}

三、tarjan求割点、桥

1、什么是割点、桥

再来引用一遍度娘:

在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多,就称这个点集为割点集合。

又是一脸懵逼。。。。

总而言之,就是这个点维持着双联通的继续,去掉这个点,这个连通分量就无法在维持下去,分成好几个连通分量。

比如说上图红色的即为一个割点。

桥:

如果一个无向连通图的边连通度大于1,则称该图是边双连通的 (edge biconnected),简 称双连通或重连通。一个图有桥,当且仅当这个图的边连通度为 1,则割边集合的唯一元素 被称为桥(bridge),又叫关节边(articulationedge)。一个图可能有多个桥。(该资料同样来自百度)

对于连通图有两种双联通,边双和点双,桥之于边双如同割点之于点双

如图则是一个桥。

2、割点和桥怎么求?

与之前强连通分量中的tarjan差不多。但要加一个特判,根节点如果有两个及以上的儿子,那么他也是割点。

 

桥的求法也差不多

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值