fdtl01
码龄10年
关注
提问 私信
  • 博客:8,062
    8,062
    总访问量
  • 10
    原创
  • 919,619
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2015-05-28
博客简介:

fdtl01的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得1次评论
  • 获得4次收藏
创作历程
  • 9篇
    2017年
  • 1篇
    2016年
TA的专栏
  • Linux、网络、OS
  • Python
    3篇
  • 机器学习
    6篇
  • 读书
    6篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习实战--chapter 5 Logistic Regression(二)疝气预测马死亡

1 LR模型与算法LR模型与算法原理参见上一篇博客。2 模型场景注:疝气:描述马胃肠病的术语。得到一批数据集,包含了368个样本,大部分有tag,每个样本的特征28个,通过这些训练出一个模型。下次我们只要输入一些特征,就能预测马屁是否会死亡。3 准备数据数据收集已经完成,接下来准备数据,主要处理数据的类型,数据是否缺失,异常。 对于缺失的数据: 1. 可用特征均值代替; 2. 特殊值,如-1
原创
发布博客 2017.03.23 ·
1198 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习实战--chapter 5 Logistic Regression(1)

1 大话Logistic Regression(LR)首先谈线性拟合,线性拟合就是类似我们高中物理课实验,测得一些数据点,画在二维坐标图中,然后采用最小二乘法拟合一个曲线,逼近这些点。最小二乘法,顾名思义,就是曲线预测的点与实际测得的点的差值平方求和,然后让该和达到最小,从而得到该曲线的系数,即得到了模型。逻辑斯回归在吴恩达老师讲义中描述如下: For the logistic regressi
原创
发布博客 2017.03.22 ·
379 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达机器学习讲义+习题带目录

发布资源 2017.03.22 ·
pdf

机器学习实战--chapter3 决策树

1 大话决策树决策树就是一颗树,每个父节点就是基于特征的一种表示,子节点就是对数据集的再次细分,通过层层细分,得到数据集中每个样本的类别。主要涉及到每层树根的特征的选取策略与递归结束时的处理。当然这里防止层数太多,可以认为限制层数。2 决策树的一般流程收集数据准备数据:标称型数据。分析数据:训练算法:构造树的数据结构。测试算法应用注:标称型数据:取值有限,适合分类;数值型数据:无限,适
原创
发布博客 2017.03.22 ·
430 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python--help方法

python获取help方法
原创
发布博客 2017.03.21 ·
946 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python list.sort 与sorted

python 帮助网址1 排序python提供了两种排序算法,一种是列表的方法,一种是内嵌的方法。其中列表的方式是in-place,即排序会影响原先的列表,内嵌的sorted的会返回一个排好序的副本。2 列表sort终端下输入help(list.sort)sort(...) L.sort(cmp=None, key=None, reverse=False) -- stable sort *I
原创
发布博客 2017.03.21 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战--chapter 2 k-NN

1 大话k-NNk-NN就是拿输入与模型中的数据进行比较,比较的方式可以是计算距离(如欧式距离,即二范数),对这些距离进行升序,选择前k个,然后从这个k个中选择标签众数。说白了就是看与谁最接近,那么就和你同类。2 k-NN 一般流程收集数据: 可以使用任何方法。准备数据:距离计算,最好在计算前归一化,可以使用数据与最小的差值,除以该列特征最大与最小差值(即该特征的范围)。分析数据:比如可以可视
原创
发布博客 2017.03.21 ·
398 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

机器学习实战--chapter 1

1 概括机器学习研究数据,探索数据背后影藏的信息,将数据转化为有用的信息供决策使用。机器学习跨学科,涉及计算机科学、工程技术、统计学等等。统计学工具可帮我们解决那些无法建立精确的数学模型的问题。 机器学习的主要任务就是分类和回归,下图显示了一些算法。 2 机器学习的步骤收集数据 方法很多(网络爬虫、传感器、公共开源数据等)准备输入数据 得到数据–> 转换成程序可以处理的格式(如pytho
原创
发布博客 2017.03.21 ·
392 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python 环境搭建(Mac OS)

1 Mac os平台Python环境所用工具PyCharm 社区版Homebrewpippyenvpyenv-virtualenv - 2 PyCharmPyCharm是Mac OS 下python开发环境比较好的一款IDE,有商用版和社区版,社区版免费。 百度搜索该工具,到其官网下载,然后按照要求安装。3 Homebrew The missing package manag
原创
发布博客 2017.03.19 ·
2703 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

Think Stats--(资料、环境、调试)

Think Stats 统计思维 程序员数学之统计概率,数据源,数据字段整理。
原创
发布博客 2017.03.19 ·
1014 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Shell流程控制

Shell 流程控制1、判断1.1 if-elif-else-fiif condition [ condition ... ]then statements-if-true-1[ elif condition [ condition ...]then statements-if-true-2...][ else state
原创
发布博客 2016.03.21 ·
262 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏