机器学习实战--chapter 1

1 概括

机器学习研究数据,探索数据背后影藏的信息,将数据转化为有用的信息供决策使用。机器学习跨学科,涉及计算机科学、工程技术、统计学等等。统计学工具可帮我们解决那些无法建立精确的数学模型的问题。
机器学习的主要任务就是分类和回归,下图显示了一些算法。
机器学习算法


2 机器学习的步骤

  1. 收集数据
    方法很多(网络爬虫、传感器、公共开源数据等)
  2. 准备输入数据
    得到数据–> 转换成程序可以处理的格式(如python中的列表)–>具体到Feature和Label时,明确类型(string, int or?)
  3. 分析输入数据
    人工分析数据(空值,异常值)–>能否通过可视化观察数据?
  4. 训练算法
    根据是否有tag,选择监督和无监督算法。
  5. 测试算法
    可以准备训练集和测试集。
  6. 使用算法
    利用得到的模型,应用的实际工程中。

本书网址

www.manning.com/MachineLearninginAction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值