动态规划题: 统计每个月兔子的总数

这篇博客介绍了使用动态规划解决兔子繁殖问题,即 Fibonacci 数列的一个实例。作者前端西瓜哥通过两种状态(可不停生的兔子,刚出生的兔子)建立动态规划模型,详细解释了状态转移方程并提供了代码实现。他还提到了类似动态规划问题如"打家劫舍"和"买卖股票的最佳时机含手续费",强调了动态规划的学习和练习的重要性。
摘要由CSDN通过智能技术生成

大家好,我是前端西瓜哥,今天来做动态规划。

描述

有一种兔子,从出生后第3个月起每个月都生一只兔子,小兔子长到第三个月后每个月又生一只兔子。比如某只兔子第 3 个月出生,那么它第 5 个月开始会每个月生一只兔子。

一月的时候有一只兔子,假如兔子都不死,问第n个月的兔子总数为多少?

示例 1:

输入:3
输出:2

示例 2:

输入:6
输出:8

题解

解法是动态规划。

兔子其实有两种状态:

  1. 可以不停生的兔子

  2. 刚生出来的兔子,它会在出生的那个月以及下一个月无法生兔子,下下个月才能生兔子。比如 3 月出生,5月才能生兔子(转换为状态 1)

状态有两种,我们将动态转移表就要声明成 number[n][2] 了,表示第 n 个月的两种状态兔子的数量。

dp[i][0] 表示可以一直生的兔子,dp[i][1] 表示刚出生的兔子。

一开始我其实设计的是三种状态(可以一直生、出生第 1 天、出生第 2 天),但发现并没有太大必要,因为我发现变成不停生状态可以消耗当前月份,并不需要转换后立即就生兔子。当然三种状态也不是不行,但需要调整一下代码。

这种 状态有多种,且它们之间会发生转换 的情况,在动态规划中还是比较常见的,比如 “198.打家劫舍”、“714. 买卖股票的最佳时机含手续费”,建议多练练这些题。

“打家劫舍” 有 2 种状态:打劫了当前这家、没打劫当前这家。

“买卖股票的最佳时机含手续费” 有 2 种状态:持有状态、不持有状态。

状态转移方程为:

dp[i][0] = dp[i-1][0] + dp[i-1][1];
dp[i][1] = dp[i-1][0];

状态转移结束后,我们将两种状态的兔子数量加起来,就得到了所有的兔子数量。

代码实现为:

function rabbitSum(n: number) {
  const dp: number[][] = new Array(n + 1);
  for (let i = 0; i < dp.length; i++) {
    dp[i] = [0, 0];
  }
  // dp[i][0] 可以一直生
  // dp[i][1] 刚出生的兔子

  dp[1][1] = 1;

  for (let i = 2; i <= n; i++) {
    dp[i][0] = dp[i-1][0] + dp[i-1][1];
    dp[i][1] = dp[i-1][0];
  }

  return dp[n][0] + dp[n][1];
}

结尾

动态规划还是要学习套路,然后多练习,才能较好地掌握。动态规划套路我以后会再写文章。

我是前端西瓜哥,欢迎关注我,学习更多前端知识。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值