LR-remainders
题面翻译
题目描述
给定一个长度为
n
n
n 的数组
a
a
a,一个正整数
m
m
m,以及一个长度为
n
n
n 的命令字符串。每个命令要么是字符 L
,要么是字符 R
。
按照字符串 s s s 中写入的顺序处理所有 n n n 个命令。处理命令的步骤如下:
首先,输出数组
a
a
a 中所有元素的乘积除以
m
m
m 的余数。
然后,如果命令是 L
,则从数组
a
a
a 中移除最左边的元素;如果命令是 R
,则从数组
a
a
a 中移除最右边的元素。
请注意,每次移动后,数组
a
a
a 的长度减少
1
1
1,并且在处理所有命令后,数组将为空。
编写一个程序,按照字符串 s s s 中写入的顺序从左到右处理所有命令。
输入格式
第一行包含一个整数 t t t( 1 ≤ t ≤ 1 0 4 1\le t\le10^4 1≤t≤104),表示输入中的测试数据数量。然后是 t t t 个测试数据的描述。
输入的每个测试数据分 3 3 3 出。
第一行包含两个整数 n n n 和 m m m( 1 ≤ n ≤ 2 ⋅ 1 0 5 , 1 ≤ m ≤ 1 0 4 1\le n\le2\cdot10^5,1\le m\le10^4 1≤n≤2⋅105,1≤m≤104)——数组 a a a 的初始长度和取余数的值。
第二行包含 n n n 个整数 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an( 1 ≤ a i ≤ 1 0 4 1\le a_i\le10^4 1≤ai≤104),数组 a a a 的元素。
第三行包含一个由 $ n $ 个字符 L
和 R
组成的字符串
s
s
s。
保证一个测试用例中所有 n n n 值的总和不超过 2 ⋅ 1 0 5 2\cdot10^5 2⋅105。
输出格式
对于每个测试用例,输出 n n n 个整数 b 1 , b 2 , … , b n b_1,b_2,\dots,b_n b1,b2,…,bn,其中 b i b_i bi 是在执行第 i i i 个命令时,当前数组 a a a 的所有元素的乘积除以 m m m 的余数。
样例 #1
样例输入 #1
4
4 6
3 1 4 2
LRRL
5 1
1 1 1 1 1
LLLLL
6 8
1 2 3 4 5 6
RLLLRR
1 10000
10000
R
样例输出 #1
0 2 4 1
0 0 0 0 0
0 0 0 4 4 4
0
题目简介:本题就是给一个数组a,一个m,还有一串字符串包含L,R
L删除最左边的一个数,R删除最右边的一个数字,按照字符串从左往右边进形,在每一次删除之前输出所有的元素乘积对m取模的结果。容易想到弄一个双指针在最左右,然后遍历字符串,每次总乘积除以删去的数字再取模,但是这样想呢看一下数据是10000,那么几个数乘起来就超long long 了肯定不行,那么删除的办法不行是不是可以想到添加的办法,你可以根据字符串知到每一个数字是第几次删除的,所以我们可以把他们按照被删除的顺序排列,然后倒着挨着乘乘的过程中倒序存储答案,这里要知道 (a * b) % m = = ((a % m) * (b%m)) % m的可以自己证明,那么上次一的答案乘前一个元素(因为是倒着遍历的)再 % m 就是答案
下面展示一些 代码片
。
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
typedef long long ll;
typedef pair<int, int> PII;
int t;
int n , m;
string s;
int a[N];
vector<int>v;
int result[N];存答案
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin >> t;
while(t --)
{
cin >> n >> m;
int ans = 1;//存储每次%的值
for(int i = 1;i <= n;i ++)
{
cin >> a[i];
}
cin >> s;
int l = 1, r = n;
for(auto it:s){//按照删除的顺序插入
if(it == 'L'){
v.push_back(a[l ++]);
}else {
v.push_back(a[r --]);
}
}
int len = v.size();
int num = n;
for(int i = len - 1;i >= 0;i --)
{
ans = ((ans % m) * (v[i] % m )) % m;//防止爆int
result[num] = ans;
num --;
}
for(int i = 1;i <= n;i ++)
{
cout << result[i] << ' ';
}
cout << endl;
v.clear();//一定不要忘了这个
}
return 0;
}
//标记每一个数字第几个被删除
//然后根据删除顺数排序,然后倒着遍历倒叙存储答案,前一个答案×下一个数% m存入数组