ZeroWidthSpace-----零宽空格

客户从其他网站上粘贴的字符串在网站后台提交后出现了“?”,但是其他网站上显示正常。

最开始查看以为是编码导致无法识别所以出现乱码的“?”,但是网站端显示都是UTF8编码,客户专题的只是一串汉字的,没有什么编码方式。

后来查看来源网站后看到显示没有问题,但是粘贴后只要保存到数据库中就会出现乱码。代码监控查看均显示正常,以为是数据库汉字编码问题,但是在数据库中监控了入库的sql脚本后看到已经存在乱码,就确定是字符串问题。

再次查看来源网站源码后看到汉字中间有段字符-“​”,查询后知道此为“零宽空格”。直接查看是看不到的,但是粘贴后存在,很是坑人。

找到原因后没有办法直接使用replace来替换,因为在字符串中不存在,需要用HttpUtility.UrlEncode转化后查找其中的“%e2%80%8b”来进行替换后再用HttpUtility.UrlDecode转化回来,这样就可以解决这个问题了。

### Zero-LMF 算法概述 Zero-LMF 是一种低秩矩阵分解(Low-Rank Matrix Factorization, LMF)方法的变体,其主要目标是在处理大规模稀疏数据时提供更高效的解决方案。该算法通过引入约束条件来优化传统 LMF 方法中的计算复杂度和存储需求[^1]。 #### 关键特性 - **约束机制**:Zero-LMF 利用了输入矩阵中大量值的特点,在分解过程中忽略这些值的影响,从而减少不必要的计算开销。 - **交替最小化策略**:类似于传统的 LMF 方法,Zero-LMF 使用交替更新的方法分别优化两个因子矩阵 \( U \) 和 \( V \),但在每次迭代中会动态调整权重以适应值分布。 以下是其实现的核心伪代码: ```python def zero_lmf(R, k, max_iter=100, lambda_reg=0.1): """ R: 输入的稀疏评分矩阵 (m x n) k: 因子维度大小 max_iter: 最大迭代次数 lambda_reg: 正则化参数 """ m, n = R.shape U = np.random.rand(m, k) # 用户特征矩阵初始化 V = np.random.rand(n, k) # 物品特征矩阵初始化 for iteration in range(max_iter): # 更新U VuVt_plus_lambdaI_inv = np.linalg.inv(V.T @ V + lambda_reg * np.eye(k)) U = R @ V @ VuVt_plus_lambdaI_inv # 更新V UtU_plus_lambdaI_inv = np.linalg.inv(U.T @ U + lambda_reg * np.eye(k)) V = R.T @ U @ UtU_plus_lambdaI_inv return U, V ``` 此代码展示了如何利用交替最小化过程逐步逼近最优解,并通过正则化项防止过拟合。 #### 应用场景 Zero-LMF 广泛应用于推荐系统领域,特别是在面对高维稀疏数据的情况下表现优异。它能够有效降低模型训练时间并提高预测精度。例如,在电子商务平台的商品推荐服务中,可以采用 Zero-LMF 对用户行为日志进行建模,进而生成个性化的商品列表[^2]。 此外,由于其高效性和灵活性,Zero-LMF 还被扩展至其他多个研究方向,比如社交网络分析、图像恢复等领域。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值