- 博客(170)
- 收藏
- 关注
原创 Prompt工程能否代替模型训练?
Prompt 工程很强,但替代不了「模型训练」本身。下面我们从底层视角拆开看看:Transformer 在干嘛?Prompt 在干嘛?训练在干嘛?它们的边界到底在哪里?
2025-12-14 17:18:33
725
原创 豆包AI手机智能操控的硬核原理
智能体将多次滚动截屏中获取的文本信息汇总,输入大模型进行摘要生成,最终以自然语言的形式回答用户:已为你搜索并收集到…的相关新闻,内容如下…。
2025-12-14 17:15:38
1008
原创 Transformer位置编码:从绝对位置到旋转位置
任意位置都能直接算出旋转角度,不需要额外参数,现在主流大模型(LLaMA、Qwen 等)几乎都使用 RoPE,随着距离 |m − n| 变大,RoPE 下点积的有效贡献会逐渐衰减:对长上下文的处理更平滑,更像人类注意力。:直接改变注意力点积:点积 = 内容相关性 + 与相对距离 |m − n| 相关的项,注意力天然偏向基于相对距离的建模:更接近人类处理语言的习惯,我们通常记得的是这个词在那个词前后几步,而不是它是整句的第 87 个字符。可以把每一组二维向量想成一个指针:位置 0:角度是 0°,指针不转。
2025-12-10 20:20:51
931
原创 大模型激活函数:从ReLU到GLU的进化之路
在任意一层前馈网络里,最基本的计算形式是hfWxbhfWxb。其中WxbWxb是线性变换,而激活函数f⋅f(\cdot)f⋅决定了这一层是不是只是另一层线性变换。如果没有激活函数,那么无论叠多少层,本质都等价于一个大线性变换,模型只能拟合线性关系。加入非线性激活函数,网络才能逼近任意复杂的非线性函数,这是深度学习真正有用的地方。前馈网络(FFN):形如FFNxW2fW1xb1b2FFNxW2fW1xb1b。
2025-11-28 19:14:17
740
原创 Cline编程智能体的核心提示词解析
深入解构开源的AI编程智能体Cline的核心提示词,揭示其通过结构化协议,思维链机制及双模态交互实现精准代码工程的核心逻辑。
2025-11-28 19:11:35
1051
原创 2025年主流开源大模型的结构设计差异
12025 年的大模型仍然是Decoder-only Transformer 主体 + 一堆结构插件主干结构没变:自回归、因果 mask、残差、归一化、注意力 + FFN。创新集中在:注意力变体(GQA、MLA、滑动窗口、线性注意力)、MoE、归一化布局、位置编码、KV cache 压缩。2MoE 已经从研究玩具变成旗舰模型标配DeepSeek-V3、Llama 4、Qwen3-MoE、GLM-4.5、MiniMax-M2、Grok 2.5 等大模型都采用 MoE。
2025-11-28 19:09:36
956
原创 Transformer层归一化详解
想把大模型训稳训快,绕不开的一件事就是搞懂Transformer里的各种归一化套路和它们背后的物理直觉。外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传。
2025-11-21 21:06:06
537
原创 2025年主流开源大模型的结构设计差异
12025 年的大模型仍然是Decoder-only Transformer 主体 + 一堆结构插件主干结构没变:自回归、因果 mask、残差、归一化、注意力 + FFN。创新集中在:注意力变体(GQA、MLA、滑动窗口、线性注意力)、MoE、归一化布局、位置编码、KV cache 压缩。2MoE 已经从研究玩具变成旗舰模型标配DeepSeek-V3、Llama 4、Qwen3-MoE、GLM-4.5、MiniMax-M2、Grok 2.5 等大模型都采用 MoE。
2025-11-21 21:03:23
1156
原创 监督对齐DPO算法实例讲解
DPO 让AI学会自我纠错还在用复杂的RLHF?DPO(直接偏好优化)正以更简单、更高效的方式,教会AI如何自我反思和择优学习。
2025-11-12 20:39:34
1005
原创 拆解扣子智能体 重塑生产力
感觉大模型(LLM)空有大脑却没手脚?今天我们从第一性原理扒一扒,扣子(Coze)是怎么给AI装上手脚,打造出最强AI Agent的!🚀。
2025-11-03 22:00:56
1008
原创 2025年三大AI底层规律
智能商品化:简单能力很快就免费,别做“人肉搜索器”。验证者定律:先做“验证易”的任务,构造反馈闭环。锯齿状边缘:AI不是全能,判断任务差异、分层推进才是正道。🎯行动建议它能数字化吗?数据足够多吗?能否构造客观评分?再画出“生成难/验难”的坐标象限,你的AI路线图就出来了。”的任务,构造反馈闭环。3.锯齿状边缘:AI不是全能,判断任务差异、分层推进才是正道。🎯行动建议它能数字化吗?数据足够多吗?能否构造客观评分?再画出“生成难/验难”的坐标象限,你的AI路线图就出来了。
2025-11-03 21:56:08
818
原创 AI时代大数据分布的深入洞察与应用
当前的大模型是卓越的相关性学习者,但无法回答“如果……会怎样?”的因果问题。因果推断的数学框架,其核心就是将复杂的联合分布分解为一系列由因果机制决定的、更简单稳定的局部条件概率分布。识别并解构数据分布,是迈向因果理解的第一步。识别和重构数据的真实分布结构,是AI想从“统计模拟”跨越到“因果理解”的必要条件。
2025-09-27 09:06:05
1007
原创 AI智能激光灭害系统设计
激光灭蚊系统是利用光学传感器和AI算法,实时探测并定位空中飞行的蚊子,再通过定向激光将其烧毁击杀的自动化装置。该方案无需化学药剂,属于纯物理灭蚊手段,可在室内或户外环境创建无蚊的安全区域。其目标是在减少蚊媒疾病传播和蚊虫骚扰的同时,避免对人畜和生态造成副作用,体现高效、精准、环保的防蚊理念。
2025-09-27 09:03:08
970
原创 大模型的底层运算线性代数
深度学习的本质是用数学语言描述并处理真实世界中的信息,而线性代数正是这门语言的基石。它不仅提供了高效的数值计算工具,更在根本上定义了如何以可计算、可组合、可度量的方式表示和变换数据。
2025-08-18 21:43:10
1476
1
原创 深度学习必然用到的概率知识
深度学习作为一种数据驱动的预测技术,本质上是处理不确定性的,而。无论是软件测试领域的AI赋能,还是AI模型自身性能评测,都需要通过概率来描述数据、模型与现实世界之间的偶然与必然关系。
2025-08-18 21:41:41
894
原创 《AI大模型评测与智能测试》
第三篇“实践蓝图”(第6-7章)着眼于测试领域AI应用,重点介绍了RAG、AI Agent开发及构建端到端智能测试系统的方法。本书聚焦AI时代的“质量”核心,以“AI赋能测试”(AI For Testing)与“AI模型评测”(Testing For AI)为双轮驱动。内容不仅深入剖析如何科学度量AI大模型的内在质量,还系统讲解如何利用AI赋能传统软件测试,帮助读者贯通从模型原理、评测到应用开发的全链路知识。
2025-08-01 12:14:35
688
原创 智能体开发的6个核心经验,价值百万
构建Manus智能体的经验教训包括:1.KV缓存避免重复计算;2.掩码技术实现动态工具调用;3.使用文件系统扩展上下文;4.通过复述任务操控注意力;5.让错误留在上下文中;6.加入少量随机变化。下文将深入拆解底层原理。
2025-07-25 20:07:50
1065
原创 AI图像编辑能力评测的8大测评集
在图像编辑领域,近期涌现了多款的数据集。这类数据集通常包含和(如修改要求、风格变换或增强提示等),模型需据此生成,并配套来衡量生成图像对文本要求的满足程度和图像质量。
2025-07-25 20:07:00
1508
原创 多智能体协同工作实例拆解
多 Agent 本质上是在大模型的指导下,多个 Agent 共同协作完成用户的任务。本文用一个实例分析 supervisor 架构下的多 Agent 设计。
2025-07-20 16:07:29
1535
原创 智能体长短期记忆最佳实践
通过的组合,LangGraph 让我们能够编排复杂、可恢复、可解释、可协作的 Agent 工作流。实现上下文工程的写入上下文。
2025-07-20 16:05:40
1117
原创 智能体上下文压缩-裁剪和摘要
model=summarization_model, # 可以用更便宜的模型max_summary_tokens=128, # 每次新增的摘要 token 上限# 新增此键用于保存先前的摘要信息,以避免每次 LLM 调用都重新摘要📊 摘要策略可利用 langmem 库的 SummarizationNode。当对话达到 max_tokens 时,它会自动对较早的消息生成摘要。当历史 + 新请求 > 384 token,就把“过界”的部分喂给⇒ 产出摘要块 ⇒ 用摘要块 + 最新消息继续。
2025-07-19 19:43:13
1541
原创 智能体上下文选择-记忆工具知识
选择上下文是智能体架构中的核心机制,旨在根据任务动态筛选最有价值的信息进入上下文窗口,提升推理质量与效率。实现从状态、记忆、工具、知识等提取关键上下文,有效控制大语言模型的“注意力焦点”。
2025-07-19 19:42:21
1142
原创 图示+例子 深入理解 前向反向传播
详细解析神经网络中的前向传播、反向传播以及计算图的原理与应用,帮助你更好地理解深度学习模型是如何优化和学习的。
2025-07-16 21:58:05
1129
原创 AI大模型输出 解码加速剖析 如何效率翻倍
先把最费内存的注意力“碎块+就地算” (Flash),再把历史缓存“分页+目录” (Paged),最后把用户请求“灵活拼车” (Batch)。三件小事一起做,就把大模型推理从“显存搬砖工”变成“高速流水线”。
2025-07-02 22:22:18
1136
原创 6阶段实现最强RAG 模块化检索增强 实践指南
通过RAG检索增强生成,补充大模型的能力,是当前AI应用热点方向,带你一次读懂的实践要点,帮AI应用系统开发者快速落地 🔥。
2025-06-30 22:00:50
980
原创 开源版gpt4o 多模态MiniGPT-4 实现原理详解
MiniGPT-4是开源的GPT-4的平民版。本文用带你快速掌握多模态大模型MiniGPT-4的模型架构、训练秘诀、实战亮点与改进方向。
2025-06-28 10:26:28
1306
原创 大模型训练 参数量-运算量-显存 如何分析计算
带你亲手算一笔账,从参数量、运算量、训练时间到显存开销,彻底搞懂训练一个大模型究竟需要多少“硬通货”。
2025-06-26 06:18:10
1196
原创 大模型训练数据 做好质量控制 三个关键处理
训练好模型前,先修好数据管道!本文带你用,把互联网“大杂烩”打造成可口的模型营养餐用于大模型的预训练,效果立竿见影🔥。
2025-06-26 06:16:37
1012
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅