自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

酌沧

资深软件工程师 致力于信息技术研究

  • 博客(154)
  • 收藏
  • 关注

原创 大模型的底层运算线性代数

深度学习的本质是用数学语言描述并处理真实世界中的信息,而线性代数正是这门语言的基石。它不仅提供了高效的数值计算工具,更在根本上定义了如何以可计算、可组合、可度量的方式表示和变换数据。

2025-08-18 21:43:10 1262 1

原创 深度学习必然用到的概率知识

深度学习作为一种数据驱动的预测技术,本质上是处理不确定性的,而。无论是软件测试领域的AI赋能,还是AI模型自身性能评测,都需要通过概率来描述数据、模型与现实世界之间的偶然与必然关系。

2025-08-18 21:41:41 741

原创 《AI大模型评测与智能测试》

第三篇“实践蓝图”(第6-7章)着眼于测试领域AI应用,重点介绍了RAG、AI Agent开发及构建端到端智能测试系统的方法。本书聚焦AI时代的“质量”核心,以“AI赋能测试”(AI For Testing)与“AI模型评测”(Testing For AI)为双轮驱动。内容不仅深入剖析如何科学度量AI大模型的内在质量,还系统讲解如何利用AI赋能传统软件测试,帮助读者贯通从模型原理、评测到应用开发的全链路知识。

2025-08-01 12:14:35 574

原创 智能体开发的6个核心经验,价值百万

构建Manus智能体的经验教训包括:1.KV缓存避免重复计算;2.掩码技术实现动态工具调用;3.使用文件系统扩展上下文;4.通过复述任务操控注意力;5.让错误留在上下文中;6.加入少量随机变化。下文将深入拆解底层原理。

2025-07-25 20:07:50 981

原创 AI图像编辑能力评测的8大测评集

在图像编辑领域,近期涌现了多款的数据集。这类数据集通常包含和(如修改要求、风格变换或增强提示等),模型需据此生成,并配套来衡量生成图像对文本要求的满足程度和图像质量。

2025-07-25 20:07:00 1120

原创 多智能体协同工作实例拆解

多 Agent 本质上是在大模型的指导下,多个 Agent 共同协作完成用户的任务。本文用一个实例分析 supervisor 架构下的多 Agent 设计。

2025-07-20 16:07:29 1246

原创 智能体长短期记忆最佳实践

通过的组合,LangGraph 让我们能够编排复杂、可恢复、可解释、可协作的 Agent 工作流。实现上下文工程的写入上下文。

2025-07-20 16:05:40 1004

原创 智能体上下文压缩-裁剪和摘要

model=summarization_model, # 可以用更便宜的模型max_summary_tokens=128, # 每次新增的摘要 token 上限# 新增此键用于保存先前的摘要信息,以避免每次 LLM 调用都重新摘要📊 摘要策略可利用 langmem 库的 SummarizationNode。当对话达到 max_tokens 时,它会自动对较早的消息生成摘要。当历史 + 新请求 > 384 token,就把“过界”的部分喂给⇒ 产出摘要块 ⇒ 用摘要块 + 最新消息继续。

2025-07-19 19:43:13 1225

原创 智能体上下文选择-记忆工具知识

选择上下文是智能体架构中的核心机制,旨在根据任务动态筛选最有价值的信息进入上下文窗口,提升推理质量与效率。实现从状态、记忆、工具、知识等提取关键上下文,有效控制大语言模型的“注意力焦点”。

2025-07-19 19:42:21 1020

原创 大模型 认知能力 生物学启发

用拆解“大模型transformer的注意力”在神经网络里的秘密,让你看到从生物到算法的跨界共振。

2025-07-16 21:59:50 607

原创 图示+例子 深入理解 前向反向传播

详细解析神经网络中的前向传播、反向传播以及计算图的原理与应用,帮助你更好地理解深度学习模型是如何优化和学习的。

2025-07-16 21:58:05 1000

原创 深度学习 必然用到的 微积分知识

带你看懂如何驱动深度学习,让模型在海量数据中迭代进化、越练越强。

2025-07-09 21:53:42 868

原创 深度学习 最简单的神经网络 线性回归网络

用最简单的线性模型讲清训练全流程,让你 5 分钟看懂AI 是怎么学会预测的 🔥。

2025-07-09 21:52:13 1482

原创 深度学习 必然用到的 线性代数知识

把标量到张量、点积到范数全串起来,帮你从搭建 AI 数学底座 🚀。

2025-07-06 14:52:45 1046

原创 AI做美观PPT:3步流程+工具测评+避坑指南

用AI做PPT不再头疼!从快速生成到工具选择,再到避坑美化,轻松搞定美观又专业的演示文稿。

2025-07-06 14:49:22 1243

原创 AI大模型输出 有时机械有时即兴 搞明白解码策略

带你看懂,并教你用参数调教它🔥。

2025-07-02 22:23:56 684

原创 AI大模型输出 解码加速剖析 如何效率翻倍

先把最费内存的注意力“碎块+就地算” (Flash),再把历史缓存“分页+目录” (Paged),最后把用户请求“灵活拼车” (Batch)。三件小事一起做,就把大模型推理从“显存搬砖工”变成“高速流水线”。

2025-07-02 22:22:18 796

原创 ViT与CLIP:图像×文本 多模态读心术揭秘

讲解ViT与 CLIP的原理、差异,以及它们在多模态大模型中的应用。

2025-06-30 22:02:16 1176

原创 6阶段实现最强RAG 模块化检索增强 实践指南

通过RAG检索增强生成,补充大模型的能力,是当前AI应用热点方向,带你一次读懂的实践要点,帮AI应用系统开发者快速落地 🔥。

2025-06-30 22:00:50 897

原创 AI大模型 指令微调数据 全面解析

本文拆解的来源、评估与训练套路,帮你用最小成本做出“言听计从”的大模型,做好大模型微调🚀。

2025-06-28 10:28:38 966

原创 开源版gpt4o 多模态MiniGPT-4 实现原理详解

MiniGPT-4是开源的GPT-4的平民版。本文用带你快速掌握多模态大模型MiniGPT-4的模型架构、训练秘诀、实战亮点与改进方向。

2025-06-28 10:26:28 1139

原创 大模型训练 参数量-运算量-显存 如何分析计算

带你亲手算一笔账,从参数量、运算量、训练时间到显存开销,彻底搞懂训练一个大模型究竟需要多少“硬通货”。

2025-06-26 06:18:10 848

原创 大模型训练数据 做好质量控制 三个关键处理

训练好模型前,先修好数据管道!本文带你用,把互联网“大杂烩”打造成可口的模型营养餐用于大模型的预训练,效果立竿见影🔥。

2025-06-26 06:16:37 937

原创 大模型训练 优化参数设置 4个技术

还在为“炼丹”参数发愁吗?这篇文章将带你彻底搞懂批次大小、学习率、优化器这些核心参数背后的深层逻辑。

2025-06-23 22:47:36 787

原创 Qwen3 Embedding 结构-加载-训练 看透模型设计哲学

作为整个句子的代表。对于因果语言模型(Causal LM)来说,这非常合理,因为模型在预测最后一个token时,其隐藏状态已经编码了前面所有文本的精华信息。这就像读完一整篇文章后,脑子里形成的那个最终总结,信息量最大!🚀fill:#333;color:#333;color:#333;fill:none;输出与应用核心计算流程(modules.json)输入与预处理Token IDs处理后Token IDs序列Token向量单句向量最终Embedding最终向量余弦相似度计算。

2025-06-20 21:19:23 1728

原创 用浏览器插件让你的鼠标变成超萌猫爪

​。

2025-06-20 18:49:55 460

原创 超级马里奥游戏带你拆解最火的强化学习PPO

本文将用超级马里奥游戏,带你一步步拆解当前最火的强化学习算法——PPO,看看它是如何把一个什么都不会的AI,调教成顶级游戏高手的。

2025-06-18 21:02:15 860

原创 Python 中不那么 Pythonic的实用技巧

虽然 Python 有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。。

2025-06-18 11:28:02 781

原创 思维链底层逻辑,换个Prompt性能飙升50%

本文带你揭开思维链(CoT)的底层逻辑,告诉你如何通过“编程”式 Prompt,将 LLM 的推理能力压榨到极致。🚀。

2025-06-17 19:01:33 878

原创 用DeepSeek做量化赚钱:策略、实操与避坑

本文用通俗语言拆解其核心交易模型、完整落地流程与常见陷阱,并讲透背后的AI驱动原理,助你用更少的时间跑出更高的收益。高频套利则侧重统计学:ADF 检验可判断两个价格序列是否“有磁力”(协整),一旦被拉远即期待“橡皮筋”弹回。组合,让从“小白”到专业量化团队都能用同一工具。AI 不会替你承担市场风险,但能帮你快速、准确地完成数据处理与策略执行,把。AI 不会替你承担市场风险,但能帮你快速、准确地完成数据处理与策略执行,把。:DeepSeek 同时解析文字、代码与数据,像“全栈分析师”。

2025-06-15 10:38:07 770

原创 AI服务器怎么测试最大并发用户数 附完整代码

💡 依次以2 4 8个并发进行测试的图片💡 依次以2 4 8个并发进行测试的log具体压测代码已经开源在github和gitee 搜索AI_pressuretest即可压测核心目标是 “在单位时间内,以尽可能小的资源消耗,模拟出海量的、符合业务场景的请求”。压测工具通过创建“虚拟用户”来模拟真实用户。生成这些虚拟用户主要有两种模式:A. 基于线程模型B. 基于事件驱动/异步I/O模型并发数本身是一个没有意义的孤立数字。有意义的说法是:“在P99响应时间低于500ms,且错误率低于0.1%的前提下,系统能

2025-06-12 20:57:57 662

原创 打造超轻量的仿chatgpt的AI聊天应用

使用纯 HTML、CSS 和 JavaScript实现了一个类似 ChatGPT 的聊天界面。支持 Markdown 渲染(AI 回复)、代码高亮、图片上传和预览、全局搜索、对话切换等。左侧边栏:显示历史对话列表,可以新建对话。主聊天区:显示用户与 AI 的消息流。顶部工具栏:包含侧边栏开关、模型选择器和全局搜索功能。底部输入区:用户可以在此输入文本、上传图片,并发送。项目开源地址 https://github.com/jiaxin576/LightAIChat。

2025-06-11 20:56:25 1121

原创 Correlations氛围测试:文本或图像的相似度热图

它的本质是将两个嵌入向量集合之间的**余弦相似度矩阵(Cosine Similarity Matrix)**渲染为一个热图,并提供丰富的交互功能让你“用肉眼判断”相似性结构。通过构造两个矩阵(原文向量 A 和摘要向量 B),计算它们所有可能组合的语义相似度(余弦值),形成一个矩阵 S,并将其可视化为热图。该步骤是把原始内容(文本或图像)分块后,使用 Jina API 生成向量(embedding),保存为。文件,计算两组向量之间的余弦相似度矩阵,启动本地服务器呈现可交互热图。个摘要向量的余弦相似度。

2025-05-31 20:01:49 922

原创 让大模型看得见自己的推理 — KnowTrace结构化知识追踪

把检索-推理“改造”成 动态知识图构建任务,再让 LLM 只关注这张不断精炼的小图 —— 这就是显式知识追踪的核心价值。

2025-05-31 20:00:53 986

原创 学习AI必须了解的张量乘法

广播机制是一种自动扩展张量维度以匹配运算的技术,无需复制数据,而是通过广播规则实现隐式对齐。

2025-05-31 20:00:09 394

原创 RLHF奖励模型的训练

本文介绍了强化学习人类反馈(RLHF)中的奖励模型实现方法。首先解释了目标函数公式,包含对比损失和模仿学习损失两部分:对比损失使正例得分高于负例,模仿学习损失维持语言生成能力。接着通过代码分析展示了基于LLaMA的奖励模型实现,包括模型结构、正负例打分函数、损失计算方法。该模型通过联合优化奖励打分和文本生成能力,在保留强化学习能力的同时确保生成质量。典型应用包括OpenAI的GPT训练流程中的奖励模型训练阶段。

2025-05-31 19:59:44 800

原创 web反检测脚本stealth.js

下载 puppeteer-extra-plugin-stealth 仓库里的文件夹,提取里面所有(之后可以打包成 stealth.min.js,给 Playwright 用)。

2025-04-27 09:26:25 661

原创 python动态注册执行action

这段 Python 代码主要用于。以下是代码的详细解析。

2025-04-27 09:25:01 580

原创 AI大模型和人脑的区别

1.LLM如Transformer架构​是一种由人工“神经元”组成的层级网络:输入的文本被切分为标记(token)序列,每个token先映射为向量表示(词嵌入)输入模型​。不同脑区在功能上各有分工,例如视觉处理主要在枕叶视觉皮层,听觉在颞叶听觉皮层,语言和决策涉及额叶等,各脑区之间通过神经网络协同工作,构建层次化、关联性的概念表示,从而实现整体认知。突触可塑性是大脑学习和记忆的关键机制:当某些神经连接反复激活时,突触传递效率会增强(或减弱),这便记录下新的记忆或知识​。

2025-04-23 21:28:22 591

原创 AI软硬件创新案例

AI算法方面,单项功能如心律失常AI检测、睡眠分期算法等已有临床验证产品,但将多模态数据融合并结合大模型进行综合分析,目前尚处于研发前沿。一方面,不同品牌设备各自为政,标准不统一,导致用户需要安装多个App来控制,体验支离破碎。首先,在互联性上,由于兼容主流标准和协议,用户不再受制于单一品牌,能把家中各种设备纳入一个平台统一控制。其次,在智能程度上,传统方案多为被动响应(用户手机远程开灯等),而本方案中的AI助理具备。一方面,健康监测仍是用户最关心的方向,另一方面,AI技术正迅速融入可穿戴领域。

2025-04-23 21:27:34 761

Chromeextent_paly.zip

Chromeextent_paly.zip

2024-04-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除