自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

酌沧

资深软件工程师 致力于信息技术研究

  • 博客(118)
  • 收藏
  • 关注

原创 web反检测脚本stealth.js

下载 puppeteer-extra-plugin-stealth 仓库里的文件夹,提取里面所有(之后可以打包成 stealth.min.js,给 Playwright 用)。

2025-04-27 09:26:25 133

原创 python动态注册执行action

这段 Python 代码主要用于。以下是代码的详细解析。

2025-04-27 09:25:01 373

原创 AI大模型和人脑的区别

1.LLM如Transformer架构​是一种由人工“神经元”组成的层级网络:输入的文本被切分为标记(token)序列,每个token先映射为向量表示(词嵌入)输入模型​。不同脑区在功能上各有分工,例如视觉处理主要在枕叶视觉皮层,听觉在颞叶听觉皮层,语言和决策涉及额叶等,各脑区之间通过神经网络协同工作,构建层次化、关联性的概念表示,从而实现整体认知。突触可塑性是大脑学习和记忆的关键机制:当某些神经连接反复激活时,突触传递效率会增强(或减弱),这便记录下新的记忆或知识​。

2025-04-23 21:28:22 381

原创 AI软硬件创新案例

AI算法方面,单项功能如心律失常AI检测、睡眠分期算法等已有临床验证产品,但将多模态数据融合并结合大模型进行综合分析,目前尚处于研发前沿。一方面,不同品牌设备各自为政,标准不统一,导致用户需要安装多个App来控制,体验支离破碎。首先,在互联性上,由于兼容主流标准和协议,用户不再受制于单一品牌,能把家中各种设备纳入一个平台统一控制。其次,在智能程度上,传统方案多为被动响应(用户手机远程开灯等),而本方案中的AI助理具备。一方面,健康监测仍是用户最关心的方向,另一方面,AI技术正迅速融入可穿戴领域。

2025-04-23 21:27:34 568

原创 python的pip download命令-2

是pip提供的一个命令,用来下载 Python 包及其依赖项的安装文件,但不会安装。

2025-04-23 21:26:44 295

原创 python异步

(如加密、视频编码),可以用 ProcessPoolExecutor。如果使用 httpx.AsyncClient。,线程对 CPU 任务优化不明显,而。进行网络请求,应该用。✅ Python 由于。在 Python 的。

2025-04-23 21:25:55 306

原创 python动态注册执行action

这段 Python 代码主要用于。以下是代码的详细解析。

2025-04-23 21:25:13 772

原创 网络socks 代理

no_proxy=localhost,127.0.0.0/8,::1,zte.com.cn,zte.intra,gitlab.zte.com.cn,10在系统/终端中设了这样的环境变量,而没有在代码中覆盖,HTTPX 就会启用该 socks 代理。HTTPX 会自动读取系统环境变量 HTTP_PROXY, HTTPS_PROXY, ALL_PROXY 等。如果某个环境变量的值是 socks://proxyhk.zte.com.cn:80,就会导致 HTTPX 默认使用这个代理。

2025-04-23 21:24:13 190

原创 UIAutomator 与 Playwright 在 AI 自动化中的界面修改对比

在 AI 驱动的 UI 自动化中,(主要用于 Web)和(用于 Android)的设计定位不同,对界面修改的支持也截然不同。下面从界面修改能力、API 设计、替代方案和实践建议等方面进行分析,对比两者在为大模型辅助决策时的作用。

2025-04-23 15:55:39 1298

原创 操作系统环境变量

系统中,环境变量用于存储系统级或用户级的配置信息,如代理设置、路径变量、应用程序参数等。export命令会列出 当前 shell 进程中已经标记为“导出”到子进程的环境变量。env命令会 列出当前 shell 进程的所有环境变量,包括所有导出的变量。它不会显示那些 只在当前 shell 进程中存在但未导出到子进程 的变量。在 Windows 上,环境变量可以通过。在 Linux 上,环境变量主要由。以及其他相关命令的使用方式。

2025-04-23 15:05:08 594

原创 大模型词汇表

在大模型内部处理,用的都是ID,根据ID可以查出token,也可以解码出实际的文本字符,记住:这些转化所需的信息词汇表文件.tiktoken中都有。tiktoken文件中的token对应的字符(串)的编码实际是采用了Base64编码,qwen.tiktoken中每一行是一个token的Base64编码和ID的对应表。)过程中 tokenizer 的工作机制,即如何将用户的输入查询(query)转换为模型理解的token ID 序列,以及这些 token ID 如何对应到实际的 token 字符串。

2025-04-22 09:38:48 954

原创 adb端口转发

adb server运行在 PC 端,监听端口的实现原理涉及以及。

2025-01-10 20:53:11 1128

原创 多模态大模型文生图和图生文的主要技术

该模型架构由图像编码器和文本编码器组成。图像编码器将图像转换为嵌入(数字列表),文本编码器将文本转换为嵌入。这两个编码器在成批的图像-文本对上进行训练,其中文本描述图像。编码器的训练方式如下:对于每个图像-文本对,图像和文本嵌入彼此“接近”。对于所有不匹配的图像-文本对,图像和文本嵌入彼此相距甚远。注意,有很多种方法可以测量两个嵌入之间的距离。一些常用的方法是欧几里得距离和余弦相似度。CLIP 使用后者。此图中有 N 个图像-文本对。I N和 T N是第 N 个图像-文本对的图像和文本嵌入。

2025-01-05 20:35:49 2249

原创 浏览器3种刷新说明和相关请求头部

检查本地缓存(Memory Cache 或 Disk Cache)决定是否从服务器获取新资源浏览器会检查缓存,但会向服务器发送条件性请求:告诉服务器“如果这个资源自 之后没有修改,就返回 ”。:基于 (实体标签),询问服务器“如果 还是 ,就返回 ”。服务器响应服务器不会重新发送资源,浏览器直接使用缓存中的版本,减少流量消耗。如果资源已修改(服务器返回 )服务器会返回新的资源,并更新 和 ,浏览器会替换旧缓存。权威补充为什么 F5 不是强制刷新?F5 依

2025-01-05 16:53:14 912

原创 pytorch组件分析

* 避免多余计算图**

2024-11-18 09:12:23 1184

原创 Android内容提供者

是 Android 调试桥(ADB)中用于直接调用内容提供者(Content Provider)定义的方法的命令。在不确定有哪些特殊字符时,可以使用单引号将整个值括起来,这样可以避免大部分特殊字符的干扰。在不确定哪些特殊字符会出现的情况下,可以通过将值用双引号括起来,并对常见特殊字符(如反斜杠。:将值进行URL编码或Base64编码处理,传递时无需担心特殊字符的影响。:例如,使用正则表达式或脚本扫描并转义可能会引发问题的字符。指定的 URI 找到对应的内容提供者。参数指定的方法,并传递。

2024-11-11 09:13:12 1264

原创 mysql知识点

,它定义了 MySQL 服务的启动、运行、管理和关闭方式。以下是每个部分的详细解释和原理说明:Description:描述该服务的名称,方便管理员识别其用途。这里是“”。After=network.target:表明 MySQL 服务应在 (即网络相关服务启动完成)之后启动,以确保 MySQL 能够依赖网络连接(如果配置了远程访问)。这不意味着网络一定启动成功,只是依赖其顺序。[Install]WantedBy=multi-user.target:指定服务的安装目标,将服务链接到 。该选项决

2024-11-03 17:52:03 1292

原创 linux TOP命令解析

top命令的输出提供了有关系统总体负载、内存使用情况以及各个进程资源使用的实时信息。

2024-11-01 16:00:57 1083

原创 在 Android 设备上部署一个 LLM(大语言模型)并通过 Binder 通信提供服务

编写 AIDL 接口文件:定义服务的接口,通过 AIDL 文件定义。实现 HAL 服务的 C++ 类:继承生成的 AIDL 接口,完成服务的功能实现。编写Android.bp文件:定义模块的构建规则。编写服务的init.rc文件:定义服务的启动命令及权限。构建和编译:将服务编译到 Android 系统中,并将其安装到/vendor分区。编写客户端应用:验证服务是否可以正常通过 Binder 调用。在 Android 系统中,需要一个。

2024-10-31 15:02:51 1355

原创 Frida底层原理详解

在 Android 设备上运行时需要root权限,这主要是由于它的工作涉及到操作其他应用程序的内存、修改进程状态、拦截系统调用等功能。而在 Android 系统(以及其他类 Unix 系统)中,操作系统的权限管理机制决定了只有具有root权限的进程才可以进行这些敏感的操作。

2024-10-27 15:45:55 1264 1

原创 pdf表格读取和筛选

为了从 PDF 文件中读取表格,并筛选出“注册单位”中包含“建工”的数据,可以使用 PyPDF2、pdfplumber、tabula-py 等库来解析 PDF 文件,然后再进行筛选。由于表格处理更复杂,由于表格在 PDF 文件中通常会以一种表格的形式存在,这些库可以直接读取表格并提取内容。

2024-10-23 21:44:10 686

原创 VLMEvalKit多模态大模型评测工具源码解析

vlmeval/api和vlmeval/vlm文件夹下分别是api接口和本地运行的大模型的代码 基类都是basevlmeval/dataset是数据集处理代码vlmeval/inference.py是推理代码run.py的整个流程。

2024-10-21 17:10:34 1170

原创 Android高通平台上大模型部署和推理

高通NPU(HTP)平台上对PyTorch/SAFETensor模型进行优化和部署的过程,具体包括格式转换、量化、编译等步骤。这个流程是为了确保模型能够在终端设备上高效地推理运行。以下是对每个步骤的详细解释和涉及的底层原理。

2024-10-09 10:37:51 2644 1

原创 python字典为什么至少需要哈希表的三分之一的行留空

Python 字典(dict)的底层实现是基于的。在哈希表中,和是非常重要的问题。为了保证字典在插入、查找、删除操作时的高效性,Python 设计了一个规则,即字典的哈希表中至少要有三分之一的空间是空的。

2024-10-04 18:46:29 920

原创 python和java的编译对比

Python 的编译器和解释器Python 是一种动态语言,但它依然有一个“编译”过程。在执行 Python 程序之前,源代码会首先被编译为字节码(Bytecode)。字节码是一种低级的、中间形式的代码,它介于 Python 源代码和机器码之间。字节码的生成是通过 Python 内置的编译器完成的。Python 的解释器会执行编译器生成的字节码。在标准的 CPython 实现中,解释器是一个字节码解释器,它逐条解释并执行字节码指令。Java 的编译器与解释器。

2024-10-03 17:44:16 1755

原创 Android中如何实现adb向应用发送特定指令并接收返回

命令是通过 Android 系统的广播机制向应用程序发送特定的消息(广播),这些消息通过Intent的形式包含在广播中。应用程序通过组件接收这些广播,并根据广播的action和附带的数据执行相应的操作。通过通过Logcat查看日志。使用广播的返回结果。通过文件共享,应用将结果写入文件后,使用adb pull拉取文件。使用和机制异步回传数据。通过共享数据并使用命令查询结果。这些方法可以根据应用的实际情况选择最适合的方式实现。提供了一种快速而直接的方式来输出调试信息,适合快速调试和测试。

2024-09-08 11:34:48 2494

原创 大模型量化相关知识

量化是一种将浮点数表示的模型权重和激活函数转化为较低比特整数的技术。通过量化,模型的内存占用和计算资源需求可以显著减少,这对于在资源受限的环境中部署深度学习模型(如边缘设备)非常有利。模型权重是神经网络中的可训练参数。在深度学习中,神经网络由多个层组成,每一层通常包含许多神经元。神经元之间的连接被称为“边”或“连接”,每个连接都有一个权重。权重控制着输入信号的强度,并且在网络训练过程中,通过不断调整这些权重来使模型学习到最佳的预测能力。

2024-08-09 16:48:23 1703

原创 Gemma Scope 帮助理解 AI 模型的内部工作原理

Gemma Scope 工具如何帮助理解 AI 模型(具体来说是 Gemma 模型)的内部工作原理,通过观察模型的“特征”来理解 AI 是如何“思考”的。

2024-08-09 15:30:58 749

原创 requests库自动选择代理

requests库会根据URL的协议自动选择使用哪个代理。对于HTTP URL,它使用http代理配置;对于HTTPS URL,它使用https代理配置,通过HTTP CONNECT方法建立到目标服务器的隧道连接。这种机制确保了请求可以通过代理服务器正确发送,并且在需要时建立安全的TLS连接。HTTP CONNECT 方法是一种特殊的HTTP请求方法,它主要用于建立与目标服务器的隧道连接(通常是用于HTTPS)。

2024-08-05 18:32:57 757

原创 数据库编程中游标 连接 commit 字符集

连接是应用程序与数据库服务器之间的通道或会话。通过这个通道,应用程序可以发送SQL查询和命令,接收数据库的响应。游标是一个数据库对象,它通过连接建立,允许逐行处理查询结果集。游标提供了从结果集中检索记录的机制。

2024-07-24 09:41:23 1016

原创 Python函数参数

在使用函数参数时,需要注意参数的顺序和作用。合理使用位置参数、关键字参数、默认参数、*args和**kwargs可以提高函数的灵活性和可读性。避免使用可变对象作为默认值参数,并且在参数组合使用时遵循正确的参数顺序。

2024-07-23 14:44:07 478

原创 Python安装

sysconfig。

2024-07-12 11:12:07 2126 1

原创 Rag评估框架Ragas

代码地址: https://github.com/rexrex9/basic_neural_networks_pytorch/tree/main/chapter_llm/rag。

2024-06-30 14:58:43 425

原创 如何评估预测值与真实值之间的匹配质量

来自opencompass/opencompass/datasets/teval/evaluators/planning_evaluator.py这段代码是一个比较复杂的过程,用于评估预测计划与真实计划之间的匹配质量。它包括多个关键步骤:计算相似度分数、创建匹配图、执行匹配算法、生成匹配映射,以及使用最长递增子序列(LIS)算法来计算正确匹配的节点数。预测值如下。

2024-06-26 11:06:10 1550

原创 深度学习windows环境配置

详见文章我电脑的CUDA下载链接如下安装成功nvcc -V命令显示如下内容我电脑的cudnn下载链接如下将cudnn-windows-x86_64-9.2.0.82_cuda12-archive里的对应bin、lib、include三个文件内容合并到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1即可。

2024-06-23 08:39:57 572

原创 AI大模型的TTS评测

L-MTL(Large Multi-Task Learning)Models 是一种大规模多任务学习模型,通过结合 Mixture of Experts(MMoE)框架与 Transformer 模型,实现对 TTS(Text-to-Speech)系统中多个评估指标的全面平衡评价。

2024-06-19 16:40:48 1833 1

原创 安卓系统跨层级的代码覆盖分析能力

插桩技术是一种在代码中嵌入额外代码以收集运行时信息的技术。记录代码覆盖情况:插入的代码可以记录哪些代码段被执行。收集性能数据:可以监控代码执行时间和资源使用。调试信息:可以帮助开发者调试复杂系统。

2024-06-19 15:13:52 1275

原创 Python日志配置策略

需要实现一个灵活的日志配置策略,使得日志记录器可以根据调用者或运行环境自动调整。假设这个 Python 文件名为__name__my_module假设有两个库,库 A 和库 B,各自配置了自己的日志记录器,然后调用my_modulemy_modulemy_modulemy_module和获取的是具有层级关系的日志记录器,它们在日志管理和配置上有不同的作用。

2024-06-15 18:12:28 1019 1

原创 处理 API 请求和速率限制的2种方法

(令牌桶算法):TokenBucket 是一个常用的速率限制算法,用于控制请求速率,确保请求以平稳的速率发送。它的工作原理如下:初始化:令牌桶以一定的速率被填充(例如,每秒增加 query_per_second 个令牌)。桶中令牌的最大数量是有限的,一旦达到上限,令牌不再增加。获取令牌:当发送请求时,需要从桶中取出一个令牌。如果桶中有足够的令牌,请求立即发送。

2024-06-14 16:09:50 1433

原创 文本相似度的三种算法

​为了实现基于嵌入向量相似度来查找输入文本与给定列表中最相似的元素,你可以使用预训练的文本嵌入模型(例如,sentence-transforers),并计算输入文本与列表元素之间的余弦相似度。如果想避免依赖外部库或模型,也可以使用传统的文本相似度方法(如 TF-IDF、词袋模型)配合 scikit-learn 来实现相似度计算,但这些方法通常无法捕捉到语义层次的相似度。

2024-06-13 20:56:20 1932

Chromeextent_paly.zip

Chromeextent_paly.zip

2024-04-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除