Dr. Ivar Jacobson 已经帮我们找到了可高效且有效的方法,去提升自我的产品开发的能力: Semat Essence

本文探讨了产品开发团队如何通过采用正确的工程实践而非仅仅遵循流程规范来提高开发效率和产品质量。强调了个人能力和团队协作的重要性,并介绍了Dr.IvarJacobson提出的SematEssence标准作为提升自我能力的有效途径。

产品开发团队,当遇到需求无法在版本中完成时,往往便会依照敏捷中的 "教条";将某些需求移出 Backlog

我称这样的思维与作法是 "教条",最主要的原因,不是敏捷的实践不对,有问题。而是,产品团队在将需求移出 Backlog后,极少会再去思考一个核心的问题:我个人是否有能力上的不足?否则,为何将需求移出 Backlog后,版本发布的质量与客户的满意度也不见得提升?

团队的开发效率与质量一直没能提升,甚至是每况愈下,当中的一个主要因素便是:大家都只关注在 "合理工作量",只知道在合理工作量下,去满足流程上的要求。然而,人与机器最大的不同便是:完全达到流程上要求的人类行为,并不能像机器般的保证,一定就会有高质量产品的产出。

所以,我们一定要有个认知:借由工具平台,去监督每个团队成员在版本开发过程中的每个活动,任务,至多只能证明团队成员将流程上该做的事都做了,但却没法保证团队成员能持续改善产品的质量与开发的效率。

团队成员要能持续改善产品的质量与开发的效率,主要是我们必须要有个高效、有效的方法,使得团队成员可在最短的时间内,获取可提升能力的 "工程实践";团队成员能力的提升,凭藉着是 "工程实践",而不是流程上的规范。

Dr. Ivar Jacobson 所创建的 Semat Essence的标准,当中最大的价值便是:使得我们可以 "组件化"的方式去构建业界或自身企业内的 "工程实践",进而可使得团队成员,可更高效的获得可提升自我能力的 "工程实践",而可更有效率的自我学习;在最短的时间内提升自我的能力。

Dr. Ivar Jacobson 已经帮我们找到了可高效且有效的方法,去提升自我的能力,欢迎你也来试试。大笑

附注:图中的胶片是来自于 Dr. Ivar Jacobson 关于 Semat Essence 与工程实践本质化的演讲。






内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
内容概要:本文详细介绍了一个基于MATLAB和极端梯度提升(XGBoost)算法的锂电池剩余使用寿命(RUL)预测项目实例。项目通过多源异构数据融合、智能特征工程、健康指标提取与RUL标签自动生成,构建了完整的数据驱动预测模型。采用XGBoost进行非线性建模,结合超参数优化、交叉验证与早停机制防止过拟合,并通过多种评估指标(如RMSE、MAE、R²、MAPE等)和可视化手段(趋势对比图、残差分布、散点拟合图、特征重要性分析等)全面验证模型性能。项目还设计了集成化GUI界面,支持数据导入、参数配置、模型训练、单样本与批量预测、结果导出等功能,实现了从算法开发到工程部署的全流程闭环。; 适合人群:具备一定MATLAB编程基础和机器学习知识的科研人员、工程师及高校学生,尤其适用于从事电池管理系统、新能源汽车、储能技术、设备健康诊断等相关领域的技术人员;有1-3年工作经验的研发人员亦可从中获得工程实践参考。; 使用场景及目标:①应用于新能源汽车动力电池、储能电站、消费电子等领域的电池寿命预测与健康管理;②实现对锂电池RUL的高精度预测,提升系统安全性、降低运维成本;③通过GUI交互界面快速部署模型,支持科研验证与工业落地;④学习如何将XGBoost算法与MATLAB结合,完成从数据预处理到模型评估的完整机器学习项目流程。; 阅读建议:建议读者结合文档提供的完整代码与GUI设计进行实践操作,重点关注数据预处理、特征工程、模型调参与结果可视化等关键环节。在学习过程中应动手运行代码,调试参数,理解每一步的实现逻辑,并尝试将模型应用于实际数据,以加深对锂电池RUL预测系统整体架构的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值