Elastic Stack系列--ElasticSearch基础
1.Elastic Stack简介
ELK实际上是三款软件的简称,分别是ElasticSearch,Logstash,Kibana组成.在发展的过程中,又有了新成员Beats的加入,所以就形成了Elastic Stack.所以说,ELK是旧的称呼,Elastic Stack是新的名字.
- ElasticSearch:ELasticSearch基于Java,是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片.索引自动分片,索引副本机制,Restful风格接口,多数据源,自动搜索负载等;
- Logstash:Logstash是基于Java的,是一个开源的用于收集,分析和存储日志的工具;
- Kibana:Kinbana基于Node.js,也是一个开源和免费的工具,Kibana可以为Logstash和ElasticSearch提供的日志分析友好的Web界面,可以汇总,分析和搜索重要数据日志.
- Beats:Beats是elastic公司开源的一款采集系统监控数据的代理agent,是在被监控服务器上以客户端形成运行的数据收集器的统称,可以直接把数据发送给ElasticSearch或者通过Logstash发送给ElasticSearch,然后进行后续的数据分析活动.Beats由如下组成:
- Packetbeat:是一个网络数据包分析器,用于监控,收集网络流量信息,Packetbeat嗅探服务器之间的流量,解析应用层协议,并关联到消息的处理,其支持ICMP(v4 and v6),DNS,HTTP,MySQL,PostgreSQL,Redis.MongoDB,Memcache等协议;
- Filebeat:用于监控,收集服务器日志文件,其已取代Logstash forwarder;
- Metribeat:可定期获取外部系统的监控指标信息,其可以监控,收集Apache,HAProxy,MongoDB,MySQL,Nginx,PostgreSQL,Redis,System,Zookeeper等服务;
- Winlogbeat:用于监控,收集Windows系统的日志信息;
2.ElasticSearch
2.1.简介
ELasticSearch是一个基于Lucene的搜索服务器,它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.ElasticSearch是用于Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎,设计用于云计算中,能够达到实时搜搜,稳定,可靠,快速,安装使用方便;
我们建立一个网站或应用程序,并要添加搜索,但是想要完成搜索工作的创建是非常困难的.我们希望搜搜索决方案要运行速度快,我们希望能有一个完全免费的搜索模式,我们希望能够简单地使用JSON通过HTTP来索引数据,我们希望我们的搜索服务始终可用,我们希望能够从一台开始并扩展到数百台,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案.因此我们利用ElasticSearch来解决所有这些问题及可能出现的更多其它问题.
2.2.安装
ElasticSearch的发展是非常快速的,所以在ES5.0之前,ELK的各个版本都不统一,出现了版本号混乱的状态.所以从5.0开始,所有Elastic Stack中的项目全部统一版本号,目前我们使用6.5.4;
2.2.1.非docker安装
2.2.2.docker安装
docker pull elasticsearch:6.5.4
docker create --name elasticsearch --net host -e "discovery.type=single-node" -e "network.host=172.16.124.131" elasticsearch:6.5.4
docker start elasticsearch
docker logs elasticsearch
需要说明的是:此docker安装是开发模式,并没有配置目录挂载等内容,集群环境后续再使用
2.2.3.elastic-search-head安装
docker pull mobz/elasticsearch-head:5
docker create --name elasticsearch-head -p 9100:9100 mobz/elasticsearch-head:5
docker start elasticsearch-head
注意:由于前后端分离开发,所以会存在跨域问题,需要在服务端做CORS的配置,如下所示,通过chrome插件安装的方式不存在该问题.
vim elasticsearch.yml
http.cors.enabled:true
http.cors.allow-origin:"*"
2.3.基本概念
- 索引
- 索引(index)是ElasticSearch对逻辑数据的逻辑存储,所以它可以分为更小的部分;
- 可以把索引看成关系型数据库的表,索引的结构是为快速有效的全文索引准备的,特别是它不存储原始值;
- ElasticSearch可以把索引存放在一台机器或者分散在多台服务器上,每个索引有一或多个分片(shard),每个分片有多个副本(replica);
- 文档
- 存储在ElasticSearch中的主要实体叫文档(document),用关系型数据库来类比的话,一个文档相当于数据库表中的一行记录;
- ElasticSearch和MongoDB中的文档类似,都可以有不同的结构,但ElasticSearch的文档中,相同字段必须有相同的类型;
- 文档由多个字段组成,每个字段可能多次出现在一个文档里,这样的字段叫做多值字段;
- 每个字段的类型,可以是文本,数值,日期等,字段类型也可以是复杂类型,一个字段包含其他子文档或者数组;
- 映射
- 所有文档写进索引之前都会先进行分析,如何将输入的文本风分割成词条,哪些词条又会被过滤,这种行为叫做映射(mapping),一般由用户自己定义规则;
- 文档类型
- 在ElasticSearch中,一个索引对象可以存储很多不同用途的对象,例如,一个博客应用可以保存文章和评论;
- 不同的文档类型不能为相同的属性设置不同的类型,例如,在同一索引中的所有文档类型中,一个叫title的字段必须具有相同的类型;
2.4.Restful API
在ElasticSearch中,提供了功能丰富的Restful API的操作,包括基本的CRUD,创建索引,删除索引等操作;
2.4.1.创建和删除非结构化索引
在Lucene中,创建索引是需要定义字段名称以及字段的类型的,在ElasticSearch中提供了非结构化的索引,就是不需要创建索引结构,即可写入数据到索引中,实际上在ElasticSearch底层会进行结构化操作,此操作对用户是透明的.
创建索引
PUT http://172.16.124.131:9200/haoke
{
"settings":{
"index":{
"number_of_shards":"2",
"number_of_replicas":"0"
}
}
}
删除索引
DELETE http://172.16.124.131:9200/haoke
{
"acknowledged":true
}
2.4.2.插入数据
2.4.2.1.指定id
POST http://172.16.124.131:9200/(索引)/(类型)/(id)
POST http://172.16.124.131:9200/haoke/user/1001
#请求数据
{
"id":1001,
"name":"张三",
"age":20,
"sex":"男"
}
#响应数据
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_version": 1,
"result": "created",
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
2.4.2.2.自动生成id
同样我们也可以不指定id插入数据,我们可以看出它已经自动生成id了.
POST http://172.16.124.131:9200/haoke/user
#请求数据
{
"id":1002,
"name":"李四",
"age":20,
"sex":"男"
}
注意:1.URL后面的id是文档id,请求数据中的id是业务id,这两个id是完全不一样的.
2.非结构化的索引,不需要事先创建,直接插入数据默认创建索引.
2.4.3.更新数据
2.4.3.1.覆盖
在ElasticSearch中,文档数据是不能被修改的,但是可以通过覆盖的方式进行更新;
PUT http://172.16.124.131:9200/haoke/user/1001
{
"id":1002,
"name":"王五",
"age":20,
"sex":"男"
}
我们可以看到,数据已经更新了,并且版本进行了+1.
2.4.3.2.局部更新
问题来了,可以局部进行更新吗?答案是可以的,之前我们讲的是文档数据不能进行更新,其实是这样的:
- 第一步:从旧文档中检索出JSON;
- 第二步:修改它;
- 第三步:删除旧文档;
- 第四步:索引新文档;
POST http://172.16.124.131:9200/haoke/user/1001/_update
#请求数据
{
"doc":{
"name":"赵柳"
}
}
#响应数据
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_version": 3,
"result": "updated",
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"_seq_no": 2,
"_primary_term": 1
}
2.4.4.删除数据
DELETE http://172.16.124.131:9200/haoke/user/1001
注意:如果删除一条不存在的数据,会响应404,删除一个文档也不会立即从磁盘上移除,它只是被标记成已删除,ElasticSearch将会在你之后添加更多索引的时候才会在后台进行删除内容的清理.
2.4.5.搜索数据
2.4.5.1.根据id搜索数据
GET http://172.16.124.131:9200/haoke/user/1001
#响应数据
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_version": 1,
"found": true,
"_source": {
"id": 1001,
"name": "张三",
"age": 20,
"sex": "男"
}
}
2.4.5.2.搜索全部数据
GET http://172.16.124.131:9200/haoke/user/_search
#响应数据(默认返回10条数据)
{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.0,
"hits": [
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_score": 1.0,
"_source": {
"id": 1001,
"name": "张三",
"age": 20,
"sex": "男"
}
},
{
"_index": "haoke",
"_type": "user",
"_id": "xl2Ij3ABhf2JFmKcKHq2",
"_score": 1.0,
"_source": {
"id": 1002,
"name": "李四",
"age": 20,
"sex": "男"
}
}
]
}
}
2.4.5.3.关键字搜索数据
#查询姓名是张三的用户
GET http://172.16.124.131:9200/haoke/user/_search?q=name:张三
#响应数据
{
"took": 29,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.5753642,
"hits": [
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_score": 0.5753642,
"_source": {
"id": 1001,
"name": "张三",
"age": 20,
"sex": "男"
}
}
]
}
}
2.4.6.DSL搜索
ElasticSearch提供丰富且灵活的查询语言叫做DSL查询,它允许你构建更加复杂,强大的查询.**DSL(Domain Specific Language特定领域语言)**以JSON请求体的形式出现.
1.查询年龄为20岁的用户
POST http://172.16.124.131:9200/haoke/user/_search
#请求体
{
"query":{
"match":{
"age":20
}
}
}
#响应体
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.0,
"hits": [
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_score": 1.0,
"_source": {
"id": 1001,
"name": "张三",
"age": 20,
"sex": "男"
}
},
{
"_index": "haoke",
"_type": "user",
"_id": "xl2Ij3ABhf2JFmKcKHq2",
"_score": 1.0,
"_source": {
"id": 1002,
"name": "李四",
"age": 20,
"sex": "男"
}
}
]
}
}
2.查询年龄大于15岁的男性用户
POST http://172.16.124.131:9200/haoke/user/_search
#请求体
{
"query":{
"bool":{
"filter":{
"range":{
"age":{
"gt":15
}
}
},
"must":{
"match":{
"sex":"男"
}
}
}
}
}
#响应体
{
"took": 28,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 0.6931472,
"hits": [
{
"_index": "haoke",
"_type": "user",
"_id": "1002",
"_score": 0.6931472,
"_source": {
"id": 1001,
"name": "李四",
"age": 22,
"sex": "男"
}
},
{
"_index": "haoke",
"_type": "user",
"_id": "1001",
"_score": 0.2876821,
"_source": {
"id": 1001,
"name": "张三",
"age": 20,
"sex": "男"
}
},
{
"_index": "haoke",
"_type":