Cursor 与 Windsurf 背后的核心算法机制

今天凌晨,一位名为Nir Diamant的技术大牛发表了一篇高质量神文,可以说把Cursor和Windsurf的核心算法说得非常透彻,就像玩抖音的需要了解抖音推荐算法一样,正在Vibe Coding的我们,当然也得快速吃透跟自己对话的编程助手,究竟是怎样一个思维回路。非常细节,值得各位收藏细读一番。

Image

市面上,有很多的AI编程工具,各种Copilot汗如充栋,但真正能博开发者一笑的也就Cursor和Windsurf,它们的魅力不仅仅在于帮助coding,更在于它们就像一个合作者一样真正理解你在构建什么。

这两款工具背后,究竟是怎样运作的?到底是怎样的算法和系统?话不多说,这就上干货。

Image

Cursor和Windsurf

如何理解你的代码

要想真正发挥作用,AI 编程助手需要理解整个代码库和意图。Cursor 和 Windsurf 都使用了先进的上下文检索系统,让 AI “看懂”你的代码。

先来看Cursor的方法。

备注:这个两阶段的检索方式,大大优于传统的关键词或正则搜索,尤其适用于那些涉及代码行为的复杂问题。

  • Cursor 会将整个项目索引进一个向量数据库——可以把它想象成创建了一张智能代码地图,将将语义相似的代码聚合在一起。

  • 在索引时,它会使用专门的编码器模型,特别强调注释和文档字符串,以更好地捕捉每个文件的作用和意图。

  • 当你提问时,它采用“两阶段检索”:

    1. 向量搜索找到可能相关的候选代码片段;

    2. 使用 AI 模型按相关性重新排序。
      类比:就像一个图书管理员,先抓来所有关于某个主题的书,然后再细细筛选出你真正需要的。

  • 你还可以用 @file 或 @folder 标签显式指定文件,相当于告诉它“请翻这几章”。

  • 当前打开的文件以及光标附近的代码也会自动被加入上下文。

Image

下面是Windsurf 的方法,比较类似。

  • Windsurf 的 Indexing Engine 也会扫描整个代码库,建立一个可搜索的代码地图。

  • 它使用基于 LLM 的搜索工具,据称比传统 embedding 搜索更精确,能更好理解你的自然语言查询并找出相关代码片段。

  • 提供建议时,不仅考虑打开当前文件,还会自动从整个项目中拉取相关文件,实现“项目级别的系统感知”。

  • 提供“上下文固定(Context Pinning)”功能:你可以把设计文档等关键信息钉在一个“AI 永远看得到的公告板”上,AI 在任何时候都能参考这些内容。

Image

Cursor和Windsurf

是如何“思考”的

作者总结道,两款助手的“思考方式”是由精心设计的提示(prompts)和上下文管理策略所引导的。

先来看Cursor 的提示结构。

  • 使用结构化系统提示,带有 <communication> 和 <tool_calling> 等标签,组织不同信息类型。

  • 明确告知 AI 行为规范,以塑造其与用户的互动方式:

    • 避免不必要的道歉,

    • 行动前先解释,

    • 不在聊天中直接输出代码,而是使用专属代码编辑器进行。

  • 使用“上下文学习(in-context learning)”技术:
    在 prompt 中展示正确的工具调用或响应的标准格式,类似“用案例带新手”。

这方面,Windsurf的机制则有些不同。Windsurf的 Cascade Agent则更加综合——

  • 使用 AI Rules(自定义规则)与 Memories(可持续记忆机制)。

  • Memories 分为:用户创建的(如 API 说明)和AI 自动生成的(来自历史交互)。这意味着 Windsurf 可以“记住”你项目的演变,而不是每次从零开始。

此外,Cursor和Windsurf有一个共同点,即两者都具备高效上下文窗口管理机制(即一次能处理的文本量),它们会压缩信息,并优先保留与你当前任务最相关的部分。

Image

两者如何执行任务的?

Cursor 和 Windsurf 都采用了一种被称为 ReAct(Reason + Act,推理加执行)的模式,将语言模型转变为多步智能代理。

先来看Cursor的步骤。

Cursor 的代理以循环方式运行:AI 决定使用哪种工具解释其意图调用工具查看结果再决定下一步行动。它可以使用的工具包括:代码搜索、读取文件、编辑代码、执行 shell 命令,甚至在线搜索文档。

这里要注意的是, Cursor 进行了一个关键的优化——“特种diff语法”:它不会让 AI 重写整个文件,而是建议具体的“语义补丁”,再通过一个独立且快速的模型将补丁合并。这种方式更高效,也更少出错。

同时,Cursor 会在沙盒环境中运行实验代码,确保不会对真实项目造成破坏。

比如你让它“修复认证 Bug”,它可能会先搜索相关代码文件,然后阅读这些文件、进行修改、再运行测试来验证修复是否成功。每一步都会明确告知你发生了什么。值得注意的是,它会限制自我修复的循环次数(例如“不超过3次”),以防陷入死循环。

Cursor 还采用了“专家混合”机制:使用强大的大模型(如 GPT-4 或 Claude)来做决策推理,使用小模型来执行具体任务,就像一个高级架构师制定方案,而由专业施工队来执行。

Image

再来看WindSurf。Windsurf 的 Cascade 也有类似机制,但更强调它的“AI 流程(AI Flows)”设计。

生成计划 → 改代码 → 请求用户确认 → 运行代码 → 分析结果 → 提出修复。

当你发出请求时,Cascade 会生成一个执行计划、进行代码修改、征求你的确认,然后才会运行代码。如果你同意,它还可以在集成的 AI 终端中运行代码、分析结果并提出修复建议。

而且,WindSurf 的代理系统非常强大,最多可以在一个流程中串联多达 20 个工具调用,无需你手动介入。这些工具包括自然语言代码搜索、终端命令、文件编辑,以及连接外部服务的 MCP 协议。这种能力使 Cascade 能一次性完成诸如安装依赖、配置项目和实现新功能等复杂任务。

更令人印象深刻的是,如果你在 AI 执行过程中手动修改了代码,Cascade 会立即感知并自动调整所有相关部分,真正实现你与 AI 的实时协作。

Image

背后的“大脑”中枢

模型架构

不出意料的是,这两款神器都使用了多个 AI 模型来执行不同任务,在响应速度与输出质量之间取得平衡。但两者的具体策略大有不同。

Cursor 的模型系统如下:

  • 使用“嵌入-思考-执行”三步代理循环(Embed-Think-Do Agent Loop)。

  • 系统根据任务类型选择最合适模型。

    • 例如使用 100k tokens 的 Claude 模型处理整个项目上下文和复杂推理,从而“看得更远”。

  • 用于生成向量嵌入的模型类似于 OpenAI 的 text-embedding-ada

  • 在代码补全和编辑上,系统会根据任务复杂性和用户设置动态选择模型。

  • 核心创新在于:通过智能动态路由机制,根据场景自动权衡大模型和小模型的使用,优化质量于响应速度。

Image

Windsurf 的模型策略则更为清晰:

  • 投入大量资源训练了自研的代码专用模型,基于 Meta 的 Llama 架构:

    • 70B 参数的 Base Model 适用于日常任务;

    • 405B 参数的 Premier Model 解决复杂挑战。

  • 支持自选 GPT-4 或 Claude等外部模型,实现高度灵活的架构。

  • 模型选择机制:小模型处理快建议,大模型搞定多文件大改动,确保系统能为每个任务匹配最合适的“智慧大脑”。

Image

它们如何与你保持同步(Sync机制)

实时同步是流畅编程体验的关键,实时适应用户操作至关重要。这两套系统都具备精巧的同步机制。

Cursor 的机制如下,主打一个token级别的流式响应:

  • Token-by-token 实时流式响应,让你看到代码“正在被写出来”的过程。

  • 如果生成的代码出现错误,它会自动检测并尝试修复,无需手动干预。

  • 跟踪你的文本光标位置,用于指导补全,并预测你下一个可能修改的编辑点。

  • 后台持续更新向量索引。它的向量索引会随着文件变动而持续更新,确保新写入的代码立即可被搜索,AI 对代码库的理解永远保持“新鲜”。

Image

而Windsurf 的核心理念,则是保持“工作流畅感”。

  • 同样支持流式输出,保持“沉浸式工作流”。

  • Cascade 代理会在你修改代码时立即感知,并实时调整计划。

  • 构建在事件驱动架构之上:保存文件、文本修改等会触发 AI 重新推理。

  • 使用 SSE(Server-Sent Events)保持编辑器、终端和聊天窗口之间的同步。

  • 当你运行代码时出现错误,AI 能立即捕捉错误信息并提出解决方案,无需你手动复制粘贴。

ps:这种设计让 AI 就像一个全神贯注的编程伙伴,时刻关注你的代码并主动配合。

最后,需要说明的是,这是作者Diamant花费很长时间研究了大量公开资料总结出来对于 Cursor 和 Windsurf 这两款 AI 神器的“核心机制”的理解,当然机制中的不少细节也会随着后续迭代而发生变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FeelTouch Labs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值