(1)顺序存储
char btree[maxsize]
按照满二叉树编号
(2)链式存储
typedef struct BTNode
{
char data;
BTNode * leftchild;
BTNode *Rightchild;
}
(3)树和二叉树的主要区别
- 树中节点的最大度数没有限制,而二叉树节点的度不超过2。
- 树中节点的孩子节点,无左右之分,而二叉树中是有区分的,即孩子是有区别的:左孩子、右孩子,且次序不可颠倒。
- 树的结点个数至少为1,而二叉树的结点个数可以为0。
(4)满二叉树和完全二叉树
满二叉树并不是完全二叉树的特例,因为满二叉树可以满在右边
满指的是K层的树有2[k]-1个节点,整个树挂满了节点
而完全的含义则是最后一层没有满,其它层均满,且叶子节点都在最左边
(5)概念
- 节点的度:某节点的度定义为该节点孩子节点的个数。
- 叶子节点:度为0的节点。
- 树的度:一棵树中,最大的节点的度称为树的度。
- 节点的高度:从该节点起到叶子节点的最长简单路径的边数。(简单路径:无重复边的路径)
- 树的高度:根节点的高度。
- 节点的层数:从根开始定义起,根为第1层,根的子节点为第2层,以此类推。
- 数的层数:根节点的层数。
- 节点的深度:即该节点的层数。
- 树的深度:根节点的深度。
- 外节点:叶子节点。
- 内节点:除叶子节点之外的节点。
- 满二叉树:二叉树中节点的度只能是0或2。
- 完全二叉树:除最后一层,每一层的节点数都达到最大。最后一层若是没满,则节点集中在左边,空的只能是右边。
- 扩充二叉树:对二叉树中度为1的节点和叶子节点添加空节点,使之成为满二叉树。
(6)定律
- 对于二叉树,根节点是第一层,则第i层至多有个结点。
- 若共有k层,则最多有节点个。
- 给定N个节点,能行程F=C(n,2n)/(n+1)个不同的二叉树
- N个节点的完全二叉树高度为 上去整[log2(n+1)]或 下取整[log2(n)]+1
- 总分支数=总节点数-1: 每一个分支都有一个结束节点
- 二叉树中,叶子节点比度为2的节点多一个:总节点数N0+N1+N2——>总分支数=N0+N1+N2-1=N1+2N2
- 对于一棵满二叉树,外部节点或者说是叶子节点数是n,则内部节点数是n-1。
(7)证明
可以分析,当n=1时,只有1个根节点,则只能组成1种形态的二叉树,令n个节点可组成的二叉树数量表示为h(n),则h(1)=1; h(0)=0;
当n=2时,1个根节点固定,还有2-1个节点。这一个节点可以分成(1,0),(0,1)两组。即左边放1个,右边放0个;或者左边放0个,右边放1个。即:h(2)=h(0)*h(1)+h(1)*h(0)=2,则能组成2种形态的二叉树。
当n=3时,1个根节点固定,还有2个节点。这2个节点可以分成(2,0),(1,1),(0,2)3组。即h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=5,则能组成5种形态的二叉树。
以此类推,当n>=2时,可组成的二叉树数量为h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)*h(0)种,即符合Catalan数的定义,可直接利用通项公式得出结果。
令h(1)=1,h(0)=1,catalan数(卡特兰数)满足递归式:H()*H()左子数目可能情况,右子树可能情况
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2)
另类递归式:
h(n)=((4*n-2)/(n+1))*h(n-1);
该递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=1,2,3,...)