用Python绘制六种可视化图表,简直太好用了

Python绘制六种常见可视化图表
本文主要介绍用Python绘制可视化图表。针对初学者易混淆图表绘制方法的问题,总结了六种常见基本图表类型,包括折线图、散点图、直方图、柱状图、饼图和三维图,并分别阐述了绘制要点,还给出了部分复杂图表的示例。

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

python免费学习资料以及群交流解答点击即可加入

可视化图表,有相当多种,但常见的也就下面几种,其他比较复杂一点,大都也是基于如下几种进行组合,变换出来的。对于初学者来说,很容易被这官网上众多的图表类型给吓着了,由于种类太多,几种图表的绘制方法很有可能会混淆起来。

因此,在这里,我特地总结了六种常见的基本图表类型,你可以通过对比学习,打下坚实的基础。

01. 折线图

绘制折线图,如果你数据不是很多的话,画出来的图将是曲折状态,但一旦你的数据集大起来,比如下面我们的示例,有100个点,所以我们用肉眼看到的将是一条平滑的曲线。

这里我绘制三条线,只要执行三次plt.plot就可以了。

show image

02. 散点图

其实散点图和折线图是一样的原理,将散点图里的点用线连接起来就是折线图了。所以绘制散点图,只要设置一下线型即可。

注意:这里我也绘制三条线,和上面不同的是,我只用一个plt.plot就可以了。

show image

03. 直方图

直方图,大家也不算陌生了。这里小明加大难度,在一张图里,画出两个频度直方图。这应该在实际场景上也会遇到吧,因为这样真的很方便比较,有木有?

04. 柱状图

同样的,简单的柱状图,我就不画了,这里画三种比较难的图。

4.1 并列柱状图

show image

4.2 叠加柱状图

show image

05. 饼图

5.1 普通饼图

show image

5.2 嵌套饼图

show image

5.3 极轴饼图

要说酷炫,极轴饼图也是数一数二的了,这里肯定也要学一下。

show image

06. 三维图

6.1 绘制三维散点图

show image

6.2 绘制三维平面图

show image

### 回答1: 你可以使用Python中的Matplotlib库来画折线图。以下是一个简单的例子: ```python import matplotlib.pyplot as plt # x轴数据 x = [1, 2, 3, 4, 5] # y轴数据 y = [2, 4, 6, 8, 10] # 绘制折线图 plt.plot(x, y) # 设置图表标题和轴标签 plt.title("折线图示例") plt.xlabel("x轴") plt.ylabel("y轴") # 显示图表 plt.show() ``` 这段代码将生成一个简单的折线图,其中x轴的数据为[1,2,3,4,5],y轴的数据为[2,4,6,8,10]。你可以根据自己的需求修改数据和图表的标题、轴标签等。 ### 回答2: Python画折线图可以使用matplotlib库来实现。首先,我们需要导入matplotlib库和numpy库(用于生成数据): import matplotlib.pyplot as plt import numpy as np 接下来,我们需要生成要绘制的数据。这里以生成一个简单的正弦曲线为例: x = np.linspace(0, 2*np.pi, 100) # 生成0到2π之间的等距离100个数据 y = np.sin(x) # 计算正弦值 然后,我们可以开始绘制折线图。使用plt.plot()函数来绘制折线,其中x轴为x数据,y轴为y数据: plt.plot(x, y) 接下来,我们可以设置折线图的标题、x轴标签、y轴标签等字体和样式: plt.title("Sine Curve") # 设置标题 plt.xlabel("x-axis") # 设置x轴标签 plt.ylabel("y-axis") # 设置y轴标签 后,我们可以使用plt.show()函数来显示折线图: plt.show() 完整代码如下: import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 2*np.pi, 100) y = np.sin(x) plt.plot(x, y) plt.title("Sine Curve") plt.xlabel("x-axis") plt.ylabel("y-axis") plt.show() 运行以上代码,即可在Python绘制出一条正弦曲线的折线图。 ### 回答3: Python可以使用Matplotlib库来绘制折线图。Matplotlib是一个常用的数据可视化工具库,它支持绘制各种类型的图表,包括折线图。 首先,我们需要安装Matplotlib库。可以使用pip命令进行安装: ``` pip install matplotlib ``` 然后,在Python代码中引入Matplotlib库: ```python import matplotlib.pyplot as plt ``` 接下来,我们创建一些数据进行绘制。假设有一组x和y的数据: ```python x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] ``` 然后,我们使用plot()函数绘制折线图: ```python plt.plot(x, y) ``` 后,使用show()函数显示绘制图表: ```python plt.show() ``` 完整的代码如下: ```python import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.plot(x, y) plt.show() ``` 运行这段代码,就可以在屏幕上看到绘制的折线图。如果需要保存为文件,可以使用savefig()函数: ```python plt.savefig('line_chart.png') ``` 这样会将图表保存为名为line_chart.png的文件。 除了基本的折线图,Matplotlib还支持设置标题、坐标轴标签、图例等功能,可以根据需要进行进一步的自定义。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值