leetcode 684. Redundant Connection

56 篇文章 0 订阅
53 篇文章 0 订阅

写在前面

contest 51 的第三题。这题如果知道并查集,基本上写出来就AC了,关键还是对并查集的理解和熟悉程度。

题目描述

We are given a “tree” in the form of a 2D-array, with distinct values for each node.

In the given 2D-array, each element pair [u, v] represents that v is a child of u in the tree.

We can remove exactly one redundant pair in this “tree” to make the result a tree.

You need to find and output such a pair. If there are multiple answers for this question, output the one appearing last in the 2D-array. There is always at least one answer.

Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: Original tree will be like this:
1
/ \
2 - 3
Example 2:
Input: [[1,2], [1,3], [3,1]]
Output: [3,1]
Explanation: Original tree will be like this:
1
/ \
2 3
Note:
The size of the input 2D-array will be between 1 and 1000.
Every integer represented in the 2D-array will be between 1 and 2000.

思路分析

简单讲就是在图中找出多余的边,该边对已存在的结点连通性没有任何影响,即,边上的两个结点已经是连通状态(connected)。这其实跟并查集的定义非常相近,我们只需要不断union未连通的结点,遇到connected的结点,return这条边即可。关于并查集,请仔细阅读这篇博客(并查集介绍),最好能够自己写出并查集代码。

代码实现

AC代码中的并查集实现基本上以上述博客为准,代码中所做的操作就是简单的union和判断是否连通(connected)。

class Solution {

    public:
    class UF {
        private:
        vector<int> id;
        vector<int> sz;
        int c;
        public:
        UF(int N):c(N) {
            for(int i = 0;i<N;++i) {
                id.push_back(i);
                sz.push_back(1);
            }
        }
        int count(){return c;};

        bool connected(int p,int q) {return find(p) == find(q);}
        int find(int p) {
            while(p!=id[p]) {
                id[p] = id[id[p]];
                p = id[p];
            }
            return p;
        }

        void UN(int p,int q) {
            int i = find(p);
            int j = find(q);
            if(i==j) return;
            if(sz[i]<sz[j]) {
                id[i] = j;
                sz[j] += sz[i];
            }
            else {
                id[j] = i;
                sz[i]+=sz[j];
            }
            c--;
        }
    };
public:
    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        // 并查集
        // 第一步 构建并查集
        UF uf(2001);
        for(auto&val:edges) {
            if(uf.connected(val[0]-1,val[1]-1)) return val;
            uf.UN(val[0]-1,val[1]-1);
        }
        return {};
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值