问题描述
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges
. Each element of edges
is a pair [u, v]
with u < v
, that represents an undirected edge connecting nodes u
and v
.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v]
should be in the same format, with u < v
.
Input: [[1,2], [1,3], [2,3]] Output: [2,3] Explanation: The given undirected graph will be like this: 1 / \ 2 - 3
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]] Output: [1,4] Explanation: The given undirected graph will be like this: 5 - 1 - 2 | | 4 - 3
Note:
- The size of the input 2D-array will be between 3 and 1000.
- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
思路
判断无向图是否有环有几种方法:
第二步:将度数变为1的顶点排入队列,并从该队列中取出一个顶点重复步骤一。
如果最后还有未删除顶点,则存在环,否则没有环。
int findParent(vector<int>& parent, int k) {
if (parent[k] != k)
parent[k] = findParent(parent, parent[k]);
return parent[k];
}
vector<int> findRedundantConnection(vector<vector<int> >& edges) {
vector<int> parent;
for (int i = 0; i < 2001; i++) // 初始化
parent.push_back(i);
int point1, point2;
for (int j = 0; j < edges.size(); j++) {
point1 = findParent(parent, edges[j][0]);
point2 = findParent(parent, edges[j][1]);
if (point1 == point2)
return edges[j];
parent[point2] = point1;
}
return vector<int>(0, 0);
}