【LeetCode】684. Redundant Connection

问题描述

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

思路

判断无向图是否有环有几种方法:

1.用并查集来判断
        新加入的边若两个点的根节点相同,则形成环这是因为这条边中一定要有一个结点是新加入集合的
2.DFS搜索图,图中的边只可能是树边或反向边,一旦发现反向边,则表明存在环。
3.如果存在回路,则必存在一个子图,是一个环路。环路中所有顶点的度>=2。
       第一步:删除所有度<=1的顶点及相关的边,并将另外与这些边相关的其它顶点的度减一。
         第二步:将度数变为1的顶点排入队列,并从该队列中取出一个顶点重复步骤一。
         如果最后还有未删除顶点,则存在环,否则没有环。

在这道题中,我们采用第一种方法。从题目看,每个数字代表一个点 ,根据第一个方法,我们需要找到第一条起点和终点有一个相同根节点的边,这条边即为结果。
初始化时,所有的点将自己作为自己的根节点。然后开始遍历edges,更新遍历的点的根节点直到找到环为止。

代码
int findParent(vector<int>& parent, int k) {
    if (parent[k] != k) 
        parent[k] = findParent(parent, parent[k]);
    return parent[k];
}

vector<int> findRedundantConnection(vector<vector<int> >& edges) {
	vector<int> parent;
    for (int i = 0; i < 2001; i++)  // 初始化
    	parent.push_back(i);

    int point1, point2;
   	for (int j = 0; j < edges.size(); j++) {
   		point1 = findParent(parent, edges[j][0]);
   		point2 = findParent(parent, edges[j][1]);
        if (point1 == point2)
        	return edges[j];
        parent[point2] = point1;
   	}
    return vector<int>(0, 0);
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值