leetcode 486. Predict the Winner

本文介绍了一道典型的动态规划题目,玩家从数组两端取数,最终得分高者胜出。文章详细解析了如何通过动态规划预测游戏胜负,并给出具体算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

二刷过程中一道经典的动态规划题目,可以帮我们更深入和细致地理解动态规划过程。

题目描述

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

思路分析

判断一个题目能否用动态规划求解的关键就是问题本身是否能够转换成子问题的组合。子问题之间,通过状态转移方程来保持关联。后一个子问题的解是前一个子问题通过状态转移方程求解得到。由此可以得出一个基本的结论,动态规划问题的解与问题规模没有关系,关键在于找到构成子问题间联系的状态转移方程。有一些问题的状态转移方程不太明显,导致很难求解(leetcode 241 状态转移通过运算符体现)。另外,还有一些问题可以通过自顶向下方式求解,这种解法通常使用递归作为求解方式。自顶向下的过程,通常是拆分子问题的过程,也因此,通常也可用自底向上的方式求解,本题就属于这一类。

我们首先写出自顶向下的问题解,再考虑自底向上的过程。对于本题,题目要求是预测胜者,两个人分别从数组的两端选择,他们都会以最优方式选择,这里有一个技巧,我们知道获胜那一方最后拿到的分数一定是比另一方多的,因此,这里的动态规划算法考虑的是两者的差值。也就是说,一方拿到的分数去减去另一方拿到的分数,如果最后大于0就获胜。这种思想复现的算法如下:

class Solution {
    bool PredictTheWinner(vector<int> nums) {
    vector<vector<int>> dp(nums.size(),vector<int>(nums.size(),0);
        return helper(nums, 0, nums.length-1, dp)>=0;
    }
    int helper(vector<int>&nums, int s, int e, vector<vector<int>>& dp){    
        if(dp[s][e]==0)
            dp[s][e] = s==e ? nums[e] : max(nums[e]-helper(nums,s,e-1,dp),nums[s]-helper(nums,s+1,e,dp));
        return dp[s][e];
    }
}

非递归写法接下来更新。

### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值